並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 5 件 / 5件

新着順 人気順

数値計算の検索結果1 - 5 件 / 5件

  • 徐々に高度になるリングバッファの話 - Software Transactional Memo

    リングバッファのイメージ図 1. リングバッファとは何か 機能的にはFirst In First Out (FIFO)とも呼ばれるキューの一種であるが、リング状にバッファを置いてそれの中でReadとWriteのインデックスがグルグルと回る構造をとる事によって容量に上限ができることと引き換えに高速な読み書き速度を得たものである。キューを単に実装するだけなら山ほど方法があって線形リストを使ってもいいしスタックを2つ使っても原理的には可能だ。その中でもリングバッファを用いた方法の利点はひとえに性能の高さでありメモリ確保などを行わないお陰でシステム系の様々な場所で使われている。 これの実装自体は情報系の大学生の演習レベルの難度であるが少し奥が深い。まずリングバッファのスタンダードなインタフェースと実装は以下のようなものである。 class RingBuffer { public: explicit

      徐々に高度になるリングバッファの話 - Software Transactional Memo
    • 統計検定準1級 合格体験記 - Qiita

      はじめに 統計検定準1級は(一財)統計質保証推進協会が実施、(一社)日本統計学会が公式認定する「2級までの基礎知識をもとに、実社会の様々な問題に対して適切な統計学の諸手法を応用できる能力を問う」試験です。現在はCBTでの実施となっています。 主観を込めて言いますと、2級と準1級では難易度に雲泥の差があります。 強調して言っておきます。まったく違います! 準1級では統計的推定や検定に加えて、多変量解析(重回帰、PCA、主成分分析、数量化)、時系列解析、マルコフ連鎖、確率過程、分散分析、ベイズ統計、MCMC...と範囲が広いのが特徴です。 以下、かなりの長文になりましたが、受験して得た知見をかなり具体的に記述しました。読者の皆様の合格への一助となれば幸いです。 目的 私はとある私立中高で物理と情報を教えています。統計の勉強を始めたのは、教科「情報」を教えるにあたってのスキルアップが目的です。も

        統計検定準1級 合格体験記 - Qiita
      • ARMはx86より効率がいいというのは過去の神話

        従来から、「ARMはx86より(電力的に)効率的だ」という言説があります。これは単純に「ARMは省電力なスマホ向けで、x86は電力を食うPC向け」程度のアバウトなイメージのこともありますし、前世紀のRISC vs CISC論争のころからある「ARMはx86 (x64を含む)に比べ命令セットがシンプルなので、命令デコードにかかる電力が少なくて済んで効率的」という議論の形をとることもあります。 この議論については、半導体エンジニアの多くは「ARMがx86 より効率が良いというのは、もはや過去の神話」(in today’s age it is a very dead argument)という認識を共有していると言っていいでしょう。有名なところではApple CPU (ARM)とZen (x86)の両方を開発したジム・ケラー氏のインタビューでも言われていますし、Chips and Cheeseとい

          ARMはx86より効率がいいというのは過去の神話
        • 【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode

          本記事では、偏微分方程式の数値解法の基本を、分かりやすい具体例とともに掘り下げていきます。偏微分方程式には解析的な解が存在しない場合が多いため、Pythonを活用してこれらの複雑な問題にアプローチする方法を学びます。 本記事を足がかりに数値解析の旅を始めてみませんか? 注1) 本記事は丁寧に解説しすぎたあまり、大変長くなっております。まずはご自身が興味のある部分だけをお読みいただくことを推奨します。 注2) 差分法の一部の話だけにとどめています。誤差や境界条件などの詳細な議論は冗長化を避けるためにご紹介していません。 偏微分方程式の数値解法とは 偏微分方程式の数値解法は、偏微分方程式(PDE: Partial Differential Equations)の解を近似的に求めるための手法のことを指します。これらの方程式は、多くの場合、解析的な解が見つけられないため、数値的な手法が必要となりま

            【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode
          • 【コード付き】非線形の偏微分方程式の数値解法【Python】 - LabCode

            本記事では、非線形の偏微分方程式の数値解法について、分かりやすい具体例とともに掘り下げていきます。Pythonを活用したアプローチ方法を学びます。 本記事を通して偏微分方程式の数値解法の1つを会得しましょう! 注) 差分法の一部の話だけにとどめています。誤差や境界条件などの詳細な議論は冗長化を避けるためにご紹介していません。 偏微分方程式の数値解法とは 偏微分方程式の数値解法は、偏微分方程式(PDE: Partial Differential Equations)の解を近似的に求めるための手法のことを指します。これらの方程式は、多くの場合、解析的な解が見つけられないため、数値的な手法が必要となります。以下に、主な数値解法をいくつか紹介します。 有限差分法(Finite Difference Method): 空間や時間を離散的なグリッドに分割し、微分を差分に置き換えることにより近似します。

              【コード付き】非線形の偏微分方程式の数値解法【Python】 - LabCode
            1