並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 7 件 / 7件

新着順 人気順

interpretabilityの検索結果1 - 7 件 / 7件

  • 特徴量重要度にバイアスが生じる状況ご存知ですか? - 学習する天然ニューラルネット

    なぜこの記事を書いたのか? 決定木をベースにしたアルゴリズムのほとんどに特徴量重要度という指標が存在する。データに対する知識が少ない場合はこの指標を見て特徴量に対する洞察深めることができる。KaggleではEDAのときにとりあえず重要度を見てみるなんてこともするようだ。 しかし、この特徴量重要度にはバイアスが存在していて、特定の条件下では信用出来ないことがある。そういった条件を広く知ってほしいということでこの記事を書いた。 この記事では人工データを生成しバイアスを再現してみた。また、こういったバイアスに対処したという論文を見つけたので軽く紹介する。おまけとしてgainベース以外の特徴量重要度についても紹介する。 目次 なぜこの記事を書いたのか? 想定読者と実験の枠組み 想定読者 限定する枠組み 特徴量重要度とは? 特徴量重要度にバイアスが生じる条件 1. 解像度が低い場合 2. 特徴量同士

      特徴量重要度にバイアスが生じる状況ご存知ですか? - 学習する天然ニューラルネット
    • 協力ゲーム理論のシャープレイ値に基づき機械学習モデルの予測を解釈するKernel SHAPの理論と実装のまとめ - Fire Engine

      機械学習の幅広い分野への応用が進むにつれ,機械学習がその予測の根拠などを理解できない「ブラックボックス」となることが問題視されており,機械学習の解釈性や説明性が注目されています.今回のテーマであるSHAP(SHapley Additive exPlanations)は,機械学習モデルへの特定の入力に対する予測の根拠を提示する代表的な手法の一つです.SHAPには用途に応じていくつかのアルゴリズムがありますが,その中でも今回はあらゆる機械学習モデルに適用可能(Model-Agnostic)なKernel SHAPという手法についてまとめました. 構成としては,まずKernel SHAPとは何かについての概要を述べた後に, Kernel SHAPを理解する上で必要な要素である「シャープレイ値」と「SHAP」について説明します.さいごに,Kernel SHAPについて「理論」と「実装」に分けて書い

        協力ゲーム理論のシャープレイ値に基づき機械学習モデルの予測を解釈するKernel SHAPの理論と実装のまとめ - Fire Engine
      • 代理モデルによる機械学習モデルの説明 - Qiita

        はじめに 代理モデル (surrogate model) とは複雑な機械学習モデル(e.g., DNN, GBDT)を近似する簡単なモデル(e.g., パラメタ数の少ないDNN, 単純決定木, etc)のことを指します.代理モデルは推論の高速化・機械学習モデルの説明などさまざまな用途に使われています. この記事では代理モデルによる機械学習モデルの説明をハンズオン的に紹介します.これは非常にシンプルかつ柔軟な手法ですが,アドホックな部分が多いためかハンズオン的な解説は見当たりませんでした.Christoph Molnar による Interpretable Machine Learning の Global Surrogate に概要は示されているので機械学習に詳しい人はこちらを読めば十分かもしれません.関連するライブラリに LIME や TreeSurrogate がありますが,わたしがこ

          代理モデルによる機械学習モデルの説明 - Qiita
        • Explainable AI in Industry (KDD 2019 Tutorial)

          [Video recording available at https://www.youtube.com/playlist?list=PLewjn-vrZ7d3x0M4Uu_57oaJPRXkiS221] Artificial Intelligence is increasingly playing an integral role in determining our day-to-day experiences. Moreover, with proliferation of AI based solutions in areas such as hiring, lending, criminal justice, healthcare, and education, the resulting personal and professional implications of AI

            Explainable AI in Industry (KDD 2019 Tutorial)
          • BlackBox モデルの説明性・解釈性技術の実装

            ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...

              BlackBox モデルの説明性・解釈性技術の実装
            • tidymodelsとDALEXによるtidyで解釈可能な機械学習 - Dropout

              はじめに パッケージ シミュレーション1 データ モデル DALEXによる解釈 変数重要度 PDP シミュレーション2 データの作成 DALEXによる解釈 PDP ICE Plot Conditional PDP clusterd ICE Plot まとめ 参考文献 ※この記事をベースにした2020年1月25日に行われた第83回Japan.Rでの発表資料は以下になります。 speakerdeck.com ※この記事で紹介するSHAPを含んだ、機械学習の解釈手法に関する本を書きました! 機械学習を解釈する技術〜予測力と説明力を両立する実践テクニック 作者:森下 光之助技術評論社Amazon はじめに 本記事では、tidymodelsを用いて機械学習モデルを作成し、それをDALEXを用いて解釈する方法をまとめています。 DALEXは Collection of tools for Visual

                tidymodelsとDALEXによるtidyで解釈可能な機械学習 - Dropout
              • Interpretability in Machine Learning: An Overview

                This essay provides a broad overview of the sub-field of machine learning interpretability. While not exhaustive, my goal is to review conceptual frameworks, existing research, and future directions. I follow the categorizations used in Lipton et al.'s Mythos of Model Interpretability, which I think is the best paper for understanding the different definitions of interpretability. We'll go over ma

                  Interpretability in Machine Learning: An Overview
                1