タグ

数学とフーリエ変換に関するt-uenoのブックマーク (2)

  • やる夫で学ぶディジタル信号処理

    やる夫cry2 実験データの解析とかで信号処理をしなくちゃならないことが多くなってきたお… やる夫cry 数学でフーリエ解析とか習ったけど,真面目に聞いてなかったのでさっぱりわからないお… やる夫 だからやらない夫に教えてもらうお! やる夫で学ぶディジタル信号処理 東北大学 大学院情報科学研究科 鏡 慎吾 更新履歴 (最終更新: 2016.01.08 ) PDF版 アスキーアートがないと読む気にならないという方は,ページ上部の「アイコンを表示する」をクリックしてください.アスキーアートではないけど多少は助けになるかも知れません. 講演の機会を頂きました.ご関係各位に感謝します: やる夫で信号処理は学べるか ―東北大学機械知能・航空工学科における信号処理教育とウェブ教材― (依頼講演), 電子情報通信学会総合大会, AS-2-8, 九州大学伊都キャンパス, 2016年3月16日. [PDF]

  • フーリエ変換の本質

    工学系の大学生なら、2回生ぐらいで習うフーリエ変換。フーリエ級数やらフーリエ展開やらの式だけ覚えさせられて、フーリエ変換の意味を理解してない人が多いようです。 そこで、フーリエ変換とは何か?をサクっと説明してみましょう。 全ての信号は、上図のようにsin波の足しあわせで表現することが出来ます。 具体的には、周波数が1のsinxと周波数が2のsin2xと周波数が3のsin3xと・・・周波数がnのsinnxを足し合わせることで、あらゆる信号を表現することが出来るのです。 しかし、ただ単にy=sinx+sin2x+sin3x+・・・としたのでは1種類の信号しか表現できません。そこで、各周波数の振幅を変化させることで、あらゆる信号を表現するのです。 上記の信号の場合、y=4*sinx+0.5*sin2x+2*sin3x+sin4xと表現できます。 さて、先程の図を用いて、周波数を横軸に、振幅の大き

    t-ueno
    t-ueno 2013/12/23
    これのことを「本質」というなら、たぶん理工学生ならみんな分かっていると思う。さらに一歩踏み込んで「どう使うか」(帯域カット等)も欲しい。けど、良記事は確か。紹介されている本は読んでみたいと思った。
  • 1