タグ

mathematicsに関するamashioのブックマーク (8)

  • 「線形代数なんて計算ドリルじゃん!」って言ったらフーリエ変換と線形代数のつながりについて教えてもらった

    ・・・んだけどぜんぜんわからなかった! とはいえ線形代数をやってると他の数学ともつながってくるんだ!ってことがわかったのでこれからの勉強が楽しみになりました。今年から大学生、一体どんなことを習うんだろう! 途中途中相槌を打ってはいるんですが完全に無意味なんで消した部分があります。

    「線形代数なんて計算ドリルじゃん!」って言ったらフーリエ変換と線形代数のつながりについて教えてもらった
  • ボロノイ図いろいろ - kaisehのブログ

    Webエンジニアバトルロワイヤルでは、平面分割手法としてボロノイ図と「疑似築道法」というものをデモしたんですが、そのとき説明に使った4種類の2次元ボロノイ図を以下に載せます。 通常のボロノイ図 「どの母点が最も近くにあるか」にもとづいて平面を分割します。ボロノイ辺は母点の垂直二等分線になります。 マンハッタン距離にもとづくボロノイ図 ユークリッド距離の代わりにマンハッタン距離を使うと、見た目ががらっと変わって、路線図や天気予報のときの都道府県図っぽくなります。 加法的重み付きボロノイ図 (Additively Weighted Voronoi Diagram) 母点にそれぞれ重みを設定して、ユークリッド距離に重みを加算したものを距離関数としてボロノイ図を作ると、ボロノイ領域を膨らませたり縮ませたりできます。ボロノイ辺は双曲線になります。 加法的重み付きべき乗ボロノイ図 (Additivel

    ボロノイ図いろいろ - kaisehのブログ
  • 微分方程式 - Wikipedia

    一変数関数の導関数の関係式で書かれる常微分方程式と多変数関数の偏導関数を含む関係式で書かれる偏微分方程式に分かれる[1]。 常微分方程式とは例えば、 や、 のような方程式である。 また、偏微分方程式は、 や、 のような格好をした方程式である。 代数的微分方程式[編集] 未知関数とその導関数の関係式が、未知関数や導関数を変数と見たときに解析関数を係数とする多項式である場合、代数的微分方程式と呼ばれる。 線形微分方程式[編集] 方程式が未知関数の一次式として書けるような方程式を線形微分方程式と呼ぶ。また、線型でない微分方程式は非線形微分方程式[注釈 3]と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 は線型微分方程式であり、 は非線型微分方程式である。線型と呼ばれる理由は後述する線型斉次な方程式について、解の線型結合がその方程式の一般解をなすためである。 未知関数

    微分方程式 - Wikipedia
  • 複素解析 - Wikipedia

    複素関数f(z) = (z2 − 1)(z − 2 − i)2/(z2+2+2i)のグラフ。色相は偏角を表し、明度(このグラフでは周期的に変化させている)は絶対値を表す。 数学の一分野である複素解析(ふくそかいせき、英: complex analysis)は、複素数上で定義された関数の微分法、積分法、変分法、微分方程式論、積分方程式論などの総称であり[1]、関数論とも呼ばれる[2][3][4]。初等教育以降で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することもある。複素解析の手法は、応用数学を含む数学全般、(流体力学などの)理論物理学、(数値解析[5][6]や回路理論[7]をはじめとした)工学などの多くの分野で用いられている。 歴史[編集] 複素解析の理論に貢献した先人[編集] 複素解析は最も古くからある数学の分野の一つであり

    複素解析 - Wikipedia
  • Wikipedia (JP) - フーリエ変換(Fourier transform)

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "フーリエ変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2013年2月) 上は時間領域で表現された矩形関数f(t)(左)と、周波数領域で表現されたそのフーリエ変換f̂(ω)(右)。f̂(ω)はSinc関数である。下は時間遅れのある矩形関数 g(t) と、そのフーリエ変換 ĝ(ω)。 時間領域における平行移動 (ディレイ)は、周波数領域では虚数部の位相シフトとして表現される。 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数fに写す変換である

    Wikipedia (JP) - フーリエ変換(Fourier transform)
  • アトラクター - Wikipedia

    離散時間力学系のグモウスキー・ミラの写像で現れるストレンジアトラクター。赤い軌道が複雑な黒点の連なりの領域へ引き込まれる。 連続時間力学系のファン・デル・ポール方程式で現れる周期アトラクター。軌道は各矢印に沿って赤い閉曲線へ引き込まれる。 力学系におけるアトラクター(英語: attractor)とは、時間発展する軌道を引き付ける性質を持った相空間上の領域である。力学系において重要なトピックの一つ。引き込まれた後の軌道は、アトラクター内に留まり続ける。アトラクターへ引き込まれる初期値の集合はベイスンや吸引領域と呼ばれる。 アトラクターは、その構造・性質にもとづき点アトラクター、周期アトラクター、準周期アトラクター、ストレンジアトラクターの4種類に分類される。点アトラクターはもっとも単純で、周りの軌道を引き寄せる1つの点である。周期アトラクターと準周期アトラクターは、連続力学系でいえばそれぞれ

    アトラクター - Wikipedia
  • ジョン・ナッシュ - Wikipedia

    ジョン・フォーブス・ナッシュ・ジュニア(John Forbes Nash Jr. 1928年6月13日 - 2015年5月23日[1])は、アメリカ人の数学者。ゲーム理論、微分幾何学、偏微分方程式で著名な業績を残す。1994年にゲーム理論の経済学への応用に関する貢献によりラインハルト・ゼルテン、ジョン・ハーサニと共にノーベル経済学賞を、2015年に非線形偏微分方程式論とその幾何解析への応用に関する貢献によりルイス・ニーレンバーグと共にアーベル賞を受賞した。 微分幾何学では、リーマン多様体の研究に関して大きな功績を残す。 1959年から統合失調症を患うようになり、1960年代には精神病院に通いながら研究を続ける。1970年ごろから寛解に向かい、1990年代には症状が出なくなったとされる。彼の半生を描いた映画『ビューティフル・マインド』は、天才数学者としての偉業と成功、及び後の統合失調症に苦し

    ジョン・ナッシュ - Wikipedia
  • ルービックキューブは25手で完成可能、米研究者が新解法の証明に成功 - Technobahn

    amashio
    amashio 2008/03/28
    佐藤雅彦さんが喜んでそう
  • 1