ブックマーク / www.riken.jp (17)

  • 全ゲノム解析で明らかになる日本人の遺伝的起源と特徴

    理化学研究所(理研)生命医科学研究センター ゲノム解析応用研究チームの寺尾 知可史 チームリーダー(静岡県立総合病院 臨床研究部 免疫研究部長、静岡県立大学 薬学部ゲノム病態解析講座 特任教授)、劉 暁渓 上級研究員(研究当時:ゲノム解析応用研究チーム 研究員; 静岡県立総合病院 臨床研究部 研究員)、東京大学医科学研究所附属ヒトゲノム解析センター シークエンス技術開発分野の松田 浩一 特任教授らの共同研究グループは、大規模な日人の全ゲノムシークエンス(WGS)[1]情報を分析し、日人集団の遺伝的構造、ネアンデルタール人[2]およびデニソワ人[3]由来のDNAと病気の関連性、そしてゲノムの自然選択が影響を及ぼしている領域を複数発見しました。 研究成果は、日人集団の遺伝的特徴や起源の理解、さらには個別化医療[4]や創薬研究への貢献が期待されます。 今回、共同研究グループは、バイオバン

    全ゲノム解析で明らかになる日本人の遺伝的起源と特徴
    kuippa
    kuippa 2024/04/18
    あーやっぱ三重構造モデルのほうじゃったか。ホモ・ルドルフェンシスも残ってる気がするけどなー。フローレンシス系統もわんちゃん。
  • 量子もつれの伝達速度限界を解明

    理化学研究所(理研)量子コンピュータ研究センター 量子複雑性解析理研白眉研究チームの桑原 知剛 理研白眉チームリーダー(開拓研究部 桑原量子複雑性解析理研白眉研究チーム 理研白眉研究チームリーダー)、ヴー・バンタン 特別研究員、京都大学 理学部の齊藤 圭司 教授の共同研究チームは、相互作用するボーズ粒子[1]系において量子もつれ[2]が伝達する速度の限界を理論的に解明しました。 研究成果は、多数のボーズ粒子が相互に作用することで生じる量子力学的な動きを理解する上で新しい洞察を提供すると同時に、量子コンピュータ[3]を含む情報処理技術における根的な制約を解明することにも寄与すると期待されます。 量子力学で現れる最も基的な粒子であるボーズ粒子が相互作用を通じてどのくらいの速さで量子的な情報を伝達できるのか、という問題は長年未解決でした。 共同研究チームはリーブ・ロビンソン限界[4]と呼

    量子もつれの伝達速度限界を解明
    kuippa
    kuippa 2024/03/30
    ボーズ粒子の有限速度が光速を超えない場合、”情報”は質量をもつことになる。ブラックホールは情報次元。
  • カマキリを操るハリガネムシ遺伝子の驚くべき由来

    理化学研究所(理研)生命機能科学研究センター 染色体分配研究チームの三品 達平 基礎科学特別研究員(研究当時、現 客員研究員)、京都大学 生態学研究センターの佐藤 拓哉 准教授、国立台湾大学の邱 名鍾 助教、大阪医科薬科大学 医学部の橋口 康之 講師(研究当時)、神戸大学 理学研究科の佐倉 緑 准教授、岡田 龍一 学術研究員、東京農業大学 農学部の佐々木 剛 教授、福井県立大学 海洋生物資源学部の武島 弘彦 客員研究員らの国際共同研究グループは、ハリガネムシのゲノムにカマキリ由来と考えられる大量の遺伝子を発見し、この大規模な遺伝子水平伝播[1]がハリガネムシによるカマキリの行動改変(宿主操作[2])の成立に関与している可能性を示しました。 研究成果は、寄生生物が系統的に大きく異なる宿主の行動をなぜ操作できるのかという謎を分子レベルで解明することに貢献すると期待されます。 自然界では、寄生

    カマキリを操るハリガネムシ遺伝子の驚くべき由来
    kuippa
    kuippa 2023/10/20
    マッドサイエンティスト「すでにミトコンドリア入ってるし、トキソプラズマに感染して性格変わる人もおるし、遺伝子操作で人向けのハリガネムシやロイコクロリディウムつくったろ(以下略」
  • 全ゲノムシークエンス解析で日本人の適応進化を解明 | 理化学研究所

    要旨 理化学研究所(理研)生命医科学研究センター統計解析研究チームの鎌谷洋一郎チームリーダー、大阪大学大学院医学系研究科遺伝統計学の岡田随象教授、慶應義塾大学医学部百寿総合研究センター[1]の広瀬信義特別招聘教授、同臨床遺伝学センターの小崎健次郎教授らの共同研究グループ※は、日人集団2,200人の全ゲノムシークエンス解析[2]を行い、日人集団の適応進化[3]に関わる遺伝子領域を同定しました。 生物の性質が、世代を経るごとに周囲の環境に対応して変化する現象を、適応進化と呼びます。適応進化の過程では、生物の設計図であるゲノム配列[4]の多様性に変化が生じます。そのため、ヒト集団におけるゲノム配列の多様性を調べることで、ゲノム配列上のどの遺伝子領域が環境の変化に適応し、その集団が遺伝学的に進化してきたかを知ることができます。 今回、共同研究グループは、バイオバンク・ジャパン[5]および慶應義

    kuippa
    kuippa 2018/04/27
    アルコール代謝は飢餓スイッチとセットなんだけれども、日本人が海藻類を消化できることから考えると食い物がらみ。腸内細菌との生物共生とかじゃねぇかな。
  • 1滴の血液からクローンマウスを誕生させることに成功 | 理化学研究所

    kuippa
    kuippa 2016/06/22
    DNA検査って血液を使うけど、そういえば赤血球とかって細胞核ねぇからDNAねぇじゃん。白血球のほうをつかうのかな。これとかは非リンパ球の白血球。
  • シビレエイ発電機 | 60秒でわかるプレスリリース | 理化学研究所

    進化の過程で、電気を発生する能力を獲得した魚たちがいます。なかでも、ウマのような大きな動物を感電させるデンキウナギは有名です。その他、デンキナマズやシビレエイもヒトを感電させることができる強い電気を発生します。これらの魚類は強電気魚と呼ばれます。強電気魚は、体内で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質(イオンポンプ、イオンチャネル)が高度に配列・集積化された「電気器官」とその制御系である「神経系」を持っているからです。 近年、生物機能に着目した“バイオ燃料電池”が開発されていますが、従来の発電法に比べて出力性能が劣っています。そこで、理研の研究者を中心とする共同研究グループは、強電気魚の発電法を人工的に再現・制御できれば画期的な方法になると考え、シビレエイを用いて実験を進めました。 最初に、共同研

    シビレエイ発電機 | 60秒でわかるプレスリリース | 理化学研究所
    kuippa
    kuippa 2016/06/02
    おや、ATP回路をつかうってことは生体蓄電池とかへのパスまでみえるんじゃないのかい?
  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

    kuippa
    kuippa 2016/06/02
    虚構かとおもった。こういう意味わかんないたのしそうな研究したいなー。
  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

    kuippa
    kuippa 2015/09/25
    ふぅゎあぁっつ??? 熱水鉱床にいる古細菌の鞭毛モーターとかは水素イオンでうごくけど、イオン駆動?? バチルス菌でか???
  • STAP細胞論文に関する調査結果について | 理化学研究所

    昨日12月25日に「研究論文に関する調査委員会」より調査報告書の提出があり、受理致しました。 調査報告書(全文)(2014年12月26日修正※、2015年1月8日修正※、2015年1月23日修正※) 調査報告書(スライド) 野依良治理事長コメント ※調査報告書(全文)について、一部に記載の間違いがあったため修正しました。 (訂正箇所:2014年12月26日) ①5ページ 2行目:【誤】約200kb 【正】約20kb ②10ページ 下から4行目:【誤】STAP幹細胞FES1 【正】ES細胞FES1 ③30ページ 1行目:【誤】データの捏造および改ざん 【正】データの捏造 (訂正箇所:2015年1月8日) 6ページ 20行目:【誤】第3染色体領域 【正】3つの染色体領域 7ページ 2行目、3行目:【誤】Charles river 【正】Charles River 9ページ 下から12行目:【誤

    kuippa
    kuippa 2014/12/26
    会計監査よろしく研究監査(内部、外部)というのも制度上必要なのかもね。
  • STAP現象の検証結果について | 理化学研究所

    文へ Home 広報活動 お知らせ お知らせ 2014 ツイート 前の記事一覧へ戻る次の記事 2014年12月19日 理化学研究所 STAP現象の検証結果について STAP現象の検証結果について、資料を公表いたします。 STAP現象の検証結果 STAP現象の検証結果(スライド資料) 野依良治理事長コメント(検証結果について) 小保方晴子研究員コメント 野依良治理事長コメント(小保方晴子研究員の退職について) Top

    kuippa
    kuippa 2014/12/19
    全部PDF
  • 真空より低い屈折率を実現した三次元メタマテリアルを開発 | 理化学研究所

    ポイント メタマテリアルを用いて真空の屈折率1.0より低い屈折率0.35を実現 3次元構造により光の入射軸方向に対して完全な等方性を実現 透明化技術や高速光通信、高性能レンズなどに応用できる可能性 要旨 理化学研究所(理研、野依良治理事長)は、真空の屈折率[1]1.0よりも低い屈折率0.35を実現した三次元メタマテリアル[2]の作製に成功しました。これは、理研田中メタマテリアル研究室の田中拓男准主任研究員と国立台湾大学の蔡定平(ツァイ・ディンピン)教授(当時台湾ITRC所長を兼務)らの国際共同研究グループによる成果です。 メタマテリアルは、光を含む電磁波に応答するマイクロ〜ナノメートルスケールの共振器アンテナ素子[3]を大量に集積化した人工物質で、共振器アンテナ素子をうまく設計することで、物質の光学特性を人工的に操作できるという特性を持っています。これまで報告されているメタマテリアルのほと

    kuippa
    kuippa 2014/10/25
    残念、これだけ回析しまくると短波になって多分これじゃ黒紫色だ。赤くないのではないか。それとも漏れるのは赤だから赤いのか。それが問題だ。
  • STAP細胞問題にご関心を寄せられる方々へ | 理化学研究所

    再生医学分野を世界的に先導してきた笹井芳樹 発生・再生科学総合研究センター副センター長の早すぎる死を防げなかったことは、痛恨の極みです。笹井副センター長に謹んで哀悼の意を表すとともに、ご家族に心からお悔やみ申し上げます。 今、大切なことは、この不幸がこれ以上周辺の関係者に影響を与えないことであると認識しております。波紋が社会的に大きく広がる中で、関係者の精神的負担に伴う不測の事態の惹起を防がねばなりません。 3月以降、STAP論文の著者たちが、多方面から様々な批判にさらされ、甚だしい心労が重なったことを懸念し、メンタルケアなどに留意していたところですが、今回の事態に至ってしまったことは残念でなりません。 現在、当該論文著者のみならず、現場の研究者、特に若い研究者たち、技術者、事務職員ならびにその家族、友人たちの動揺と不安は深刻であり、非常に大きな心労を抱えている者もおります。理研は、今後も

    kuippa
    kuippa 2014/08/08
    ブックマークコメントを見ていると嘆息する。
  • STAP細胞論文に関する笹井芳樹副センター長の会見時の資料について | 理化学研究所

    STAP細胞論文に関する笹井芳樹 発生・再生科学総合研究センター副センター長の会見(日15時開催)時に説明に用いた資料は以下の通りです。 説明資料

    kuippa
    kuippa 2014/04/16
    ようやくスッキリした。やっぱし論文の方が世間の批判より筋通ってる。
  • 404 Not Found | 理化学研究所

    お探しのページが見つかりませんでした。 誠に恐れ入りますが、お客様がアクセスしようとしたページまたはファイルが見つかりませんでした。 お探しのページは、削除または名前が変更された、もしくは一時的に使用できなくなっている可能性がございます。

    kuippa
    kuippa 2014/03/05
    こんな詳細に書いてくれたらわしでさえ追実験できそう。まねっこしてできちゃったらどうしよう。
  • 404 Not Found | 理化学研究所

    お探しのページが見つかりませんでした。 誠に恐れ入りますが、お客様がアクセスしようとしたページまたはファイルが見つかりませんでした。 お探しのページは、削除または名前が変更された、もしくは一時的に使用できなくなっている可能性がございます。

    kuippa
    kuippa 2014/01/30
  • 404 Not Found | 理化学研究所

    お探しのページが見つかりませんでした。 誠に恐れ入りますが、お客様がアクセスしようとしたページまたはファイルが見つかりませんでした。 お探しのページは、削除または名前が変更された、もしくは一時的に使用できなくなっている可能性がございます。

    404 Not Found | 理化学研究所
    kuippa
    kuippa 2014/01/29
    まじでー。酸処理だけで初期化とか。 もしかして皮様嚢腫とかphトリガー? 紅茶のお風呂が流行るな(間違った誤解で
  • 新星爆発の瞬間の観測に成功 | 理化学研究所

    ポイント 小マゼラン星雲に極めて明るいX線を放つ突発天体を発見 X線は新星爆発直後の約1時間、重量級の白色矮星を包み込んだ「火の玉」から放射 「火の玉」の観測は史上初、「火の玉」からの閃光中にネオンの放射を発見 要旨 理化学研究所(理研、野依良治理事長)は、宇宙航空研究開発機構(JAXA、奥村直樹理事長)と共同で開発し、国際宇宙ステーション(ISS)に搭載した全天X線監視装置「MAXI(マキシ)」を用いて、新星爆発の瞬間に重量級の白色矮星[1]を包みこんだ「火の玉」を初めて観測することに成功しました。これは、理研グローバル研究クラスタ(玉尾皓平クラスタ長)理研のMAXIチーム(牧島一夫チームリーダー) の森井幹雄協力研究員らを中心とした全国のMAXI研究グループ[2]と、NASAのSwift(スウィフト)衛星チームの協力研究者[3]による共同研究グループの成果です。 重い白色矮星の表面上で

    kuippa
    kuippa 2013/11/15
    これ見つけたときヒャッホゥーーーってなっただろうな
  • 1