タグ

Mathに関するikajigokuのブックマーク (40)

  • Mathematical Optimization in 60 minutes

    講演では,数理最適化の基的な枠組みを概観することで,数理最適化格的に学習するきっかけを与えることを目的にしています. このスライドでは,双対問題をはじめとする多くの重要な概念の説明を省略しています.もし,このスライドを読み終えて数理最適化を深く理解できたと感じたなら,それはたぶん気のせいです. (追記2020/9/5)スライドの元ネタとなる「しっかり学ぶ数理最適化」が10月下旬に講談社より出版されます.

    Mathematical Optimization in 60 minutes
  • コラム

    ■コラム「閑話休題」 更新情報:2024/04/07 2091.包除原理(その12) 追加 1.二重らせん構造 (24/01/01) 2.ビーベルバッハ予想(その11) (24/01/01) 3.π^π(その26) (24/01/01) 4.π^π(その27) (24/01/01) 5.ビーベルバッハ予想(その12) (24/01/01) 6.誤差±1(その4) (24/01/01) 7.誤差±1(その5) (24/01/01) 8.π^π(その28) (24/01/01) 9.π^π(その29) (24/01/01) 10.π^π(その30) (24/01/01) 11.π^π(その31) (24/01/01) 12.π^π(その32) (24/01/01) 13.π^π(その33) (24/01/01) 14.π^π(その34) (24/01/01) 15.π^π(その35) (24/

  • フロベニウスの硬貨交換問題 - Wikipedia

    原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。(2019年1月) 2ペンスと5ペンスのコインだけでは、3ペンスを作ることはできないが、4ペンス以上は全て作ることができる。 フロベニウスの硬貨交換問題(フロベニウスのこうかこうかんもんだい)とは、指定された種類の硬貨だけではぴったり払えない最大の金額を求める数学の問題である[1]。フロベニウスの問題、シルベスターの切手問題とも呼ばれる。数学者フェルディナント・ゲオルク・フロベニウスに因んで名付けられた。例えば、3円と5円の硬貨だけでは作れない最大の金額は7円である。コインの種類の組み合わせに対するこの問題の解はフロベニウス数と呼ばれる。フロベニウス数が存在するのは、硬貨の額面が互いに素のときに限られる。 硬貨が a円と

    フロベニウスの硬貨交換問題 - Wikipedia
  • la1-2023 [easyarithmetician / atelier aterui]

    このページは, 2023 年度 筑波大学理工学群数学類開設授業科目「線形代数I(科目番号 FBA1601/化学類対象, FBA1611/地球学類対象)」のサポートページです。

  • 数学の未解決問題「アインシュタイン問題」が解決? 1つの図形だけで敷き詰めても“周期性が生まれない”

    Innovative Tech: このコーナーでは、テクノロジーの最新研究を紹介するWebメディア「Seamless」を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。Twitter: @shiropen2 英国の数学者らと、カナダのウォータールー大学と米アーカンソー大学に所属する研究者らが発表した論文「An aperiodic monotile」(プレプリント)は、繰り返しパターンを作らず、2次元の表面を無限に敷き詰めることができる単一のタイル形状を発見した研究報告である。 このような図形を非周期的なタイルと呼び、2次元の平面にタイルを隙間なく敷き詰めるが決して周期的ではない形状を指す。 非周期的なタイルの最初の集合は、1966年に発見された2万種類以上のタイルの組み合わせだった。その後、タイルの種類を減らす方向に研究が進んだ結果、最も有名な非周期的なタ

    数学の未解決問題「アインシュタイン問題」が解決? 1つの図形だけで敷き詰めても“周期性が生まれない”
  • https://twitter.com/Ototo_/status/1580162767482679297

    https://twitter.com/Ototo_/status/1580162767482679297
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修正は 1 週間後となります. [目次] 第1章 数学の基礎知識(p.5~) 第2章 場合の数(p.31~) 第3章 確率と期待値(p.56~) 第4章 統計的な解析(p.69~) 第5章 いろいろな関数(p.103~) 第6章 三角比と三角関数(p.141~) 第7章 証明のやり方(p.160~) 第8章 ベクトル(p.187~) 第9章 微分法と積分法(p.205~) 第10章 その他のトピック(p.240~) スライドのまとめ(p.254~)

    150 分で学ぶ高校数学の基礎
  • 因果推論とグラフ理論 - エクサウィザーズ Engineer Blog

    こんにちは。数理最適化ギルドでエンジニアをしている加藤です。 ある自社プロダクトの開発を通じて因果推論について勉強する機会がありました。因果推論は統計の分野ですが、その中で数理最適化技術が使えることを知り、とても面白かったのでその内容をシェアしようと思います。具体的には組合せ最適化問題のひとつである最小カット問題が、因果推論のタスクの一部である識別可能性に利用できるという話をします。 前半は因果推論についての概説で特に予備知識は仮定していないです。後半は計算時間やネットワークフローなどのアルゴリズムを知っていると読みやすいと思います。 因果推論とは 因果推論の目的 統計的因果推論とは事象の間の因果効果を実験データや観測データから推定することを目的とした統計学の一分野です。単に因果推論といった場合は統計的因果推論を含むより広い概念を指すことがありますが、簡単のため以下では因果推論といえば統

    因果推論とグラフ理論 - エクサウィザーズ Engineer Blog
  • 数理最適化ことはじめ / Introduction to Mathematical Optimization

    スライドでは、数理最適化を概観し、基的な問題とその解き方を分かりやすく解説することを目標にしています。数理最適化に興味を持っていただければ嬉しいです。 【目次】 1 章 数理最適化とは(p.2~20) 2 章 連続最適化問題(p.21~133) 3 章 離散最適化問題(p.134~238) 4 章 まとめ(p.239~248)

    数理最適化ことはじめ / Introduction to Mathematical Optimization
  • 数学における「自明」の意味|さのたけと

    一昨日、数学における「自明」の意味について ツイート したところ一定の反響がありました。 数学の教科書において「自明」「明らか」といった言葉は頻出でありながら、文でその意味がちゃんと説明されることは稀で、結果としてそれらの言葉を 誤解 している人や、それらの言葉が使われることに 圧力・反感 を感じる人も一定の割合でいるようです。 この記事では、その言葉の意味を説明すると共に、なぜそれらの言葉が数学において必要であるのかを解説してみたいと思います。 背景三日前、 数学系 YouTuber の数学野郎さんが 「ひろゆきに影響された数学系YouTuber」という(とても面白い)動画を公開していました。 彼はその中で「√2 が無理数であることを証明するには、まず √2 が実数であることを示さなければならない」と主張していました。それに対して「√2 が実数であることは自明であって欲しい」とコメント

    数学における「自明」の意味|さのたけと
  • 【Python】専門書や論文を読みたいけど数学が苦手・わからない人向けのコードを読んで学ぶ数学教本 - Qiita

    はじめに プログラミング自体は文系、理系、年齢関わらず勉強すればある程度ものになります。プログラミングがある程度できるようになるとTensorflow,PyTorchやscikit-learn等のライブラリで簡単にできる機械学習やデータサイエンスに興味を持つの必然! これからさらになぜ上手くいくのか・いかないのかの議論をしたい、社内・外に発表したい、理論的な所を理解したい、先端研究を取り入れたい、応用したい等々と次々に実現したい事が増えるのもまた必然でしょう。このときに初めて数学的なバックグラウンドの有無という大きな壁が立ちはだかります。しかし、数学は手段であって目的ではないので自習に使える時間をあまり割きたくないですよね。また、そもそも何から手を付けたら良いかわからないって人もいるかと思います。そんな人に向けた記事です。記事の目標は式の意図する事はわからんが、仕組みはわかるという状態に

    【Python】専門書や論文を読みたいけど数学が苦手・わからない人向けのコードを読んで学ぶ数学教本 - Qiita
  • できるだけ嘘を書かずに計算量やオーダーの説明をしようとした記事 - えびちゃんの日記

    計算量についてのお話です。対象は、プログラミング経験はあるが計算量のことを知らない初心者から、計算量のことを知っているつもりになっている中級者くらいです。 数式を見たくない人にとっては読むのが大変かもですが、深呼吸しつつ落ちついて読んでくれるとうれしいです。 それから、この記事が自分には合わないな〜と思ったときは、(別の記事を Qiita とかで検索するよりも)この記事の一番下の 参考文献 にあるを読むことをおすすめします。Amazon の試し読みで無料で読めます*1。 TL; DR 関数の増加度合いのことをオーダーと呼ぶよ 計算量は、入力サイズ(など)を受け取ってアルゴリズムの計算回数(など)を返す関数だよ その関数のオーダーについての議論がよく行われるよ オーダーを上から抑えるときは \(O\)、下から抑えるときは \(\Omega\) を使うよ オーダーを上下両方から抑えたいときは

    できるだけ嘘を書かずに計算量やオーダーの説明をしようとした記事 - えびちゃんの日記
  • グラフ理論入門 | DevelopersIO

    こんにちは、ドイツのモナでございます〜 いろんなサイエンスにおいてグラフ理論がとても重要な用具となっていますが、グラフ理論ってそもそも何なのかご存知ない方も少なくもないですね。 ということで、今日は簡単にグラフ理論の基や用語など紹介したいと思います!なお、入門のため誰にでも分かるように数学的な定義は避けるようにします。 また、グラフ理論の応用は別の話ですので今回は応用の話しません〜 なぜグラフが面白いのか 具体的な応用の話はしませんが、たくさんの分野においてグラフ理論が重要となっています。 ネットワーク(例:トポロジー、ルーティングアルゴリズム) AI(例:ニューラルネットワーク) コンピューターサイエンス(例:ファイルシステム) 社会科学(例:ソーシャルネットワーク分析) 皆さんの生活の中(例:カーナビの最短ルートの計算) グラフ理論とは? ここで議論するグラフというのは、よく思い浮か

    グラフ理論入門 | DevelopersIO
  • πとeの最大公約数を求めようとしたらどうなるの、っと - アジマティクス

    816と663の最大公約数は51です(挨拶)。 みなさんは今日も最大公約数を求めていますか? そうですか〜 いくつか整数があったときに、それらを「共通して割り切る数」が「公約数」であり、その中で最大のものが最大公約数です。 例えば42と30だったら最大公約数は6ですね。当然これらは1でも2でも3でも両方割り切れるけれども、その中で最大のものをとると6だよ、ってことです。 さて、そんな最大公約数に関しては、以下のような興味深いビジュアル表現が知られています。 なるほど〜。いい図ですね。 横に42、縦に30であるような長方形を用意して、その長方形の各辺を同時にピッタリ埋め尽くすような最大の正方形を考えると、その一辺の長さは6である、ということを表現しているんですね。 これが例えば一辺7や5の正方形で埋め尽くそうとすると、ハミ出たり足りなかったりします。一辺2や3でも埋め尽くすことはできますが「

    πとeの最大公約数を求めようとしたらどうなるの、っと - アジマティクス
  • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

    「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST
    ikajigoku
    ikajigoku 2021/02/12
    すごい
  • 音階の数学|じーくどらむす

    私の大好きな数学者の名言で、「音楽は感性の数学であり、数学は理性の音楽である」という言葉があります。 数を原理とするピタゴラス教団がピタゴラス音律を作り出し、そこから純正律という整数比率によるハーモニーを重視した音律が作られたことからも、音楽数学の関係性は深いと言えるでしょう。 しかし、 実際に数学を多少わかって、音楽を多少嗜んでいる方であれば、音楽で使われる様々な単位への違和感を感じたことがあるのではないでしょうか。 とにかく既存の音楽理論や音楽文化が、「12音種」「7幹音」「5線譜」「1から数える」すべてが噛み合っていない感じがすごい。この噛み合ってない上で究極の覚えゲーを重ねがけして理論作り上げてんのヤバい。 — じーくどらむす/岩翔 (@geekdrums) July 12, 2020 音楽を取り巻く数への違和感まずこの「12音階」(ド~シまで、#、♭も含めた1オクターブ以内の

    音階の数学|じーくどらむす
  • 掛谷問題 ~線分を回せる面積最小の図形を求めて~ - Corollaryは必然に。

    この記事は、日曜数学Advent Calender 2016の22日目の記事です。 21日目の記事はみずすまし(nosiika)さんの「正方形+正方形=正方形の話」です。 中学生のときに見つけたピタゴラス数(3,4,5)(5,12,13)(7,24,25)(9,40,41)…にあんな性質があったなんて…! イントロダクション 今回、私が紹介するのは「掛谷(かけや)問題」についてです*1。 掛谷問題(1916)長さ1の線分を領域内で1回転させることのできる図形のうち、面積が最小の図形は何か? この問題、知らない方はちょっと考えてみてください。 名前にあるとおり、日数学者、掛谷宗一(1886 - 1947)が1916年の11月にこの問題を考え([2]より)、1917年に提出した問題です。そして、2016年12月にこの事実を知った私はこう思ったのです。 うおお!100周年だぁ!! 書きたいな

    掛谷問題 ~線分を回せる面積最小の図形を求めて~ - Corollaryは必然に。
    ikajigoku
    ikajigoku 2020/07/29
    すごい
  • 2つのボールをぶつけると円周率がわかる - 大人になってからの再学習

    一か月ほど前に New York Times で紹介されていた記事。 The Pi Machine - NYTimes.com ここで紹介されているのは、なんと驚くべきことに、2つのボールをぶつけるだけで円周率(3.1415...)の値がわかる、という内容。 これだけだと、全然ピンとこないと思うので、もう少し詳しく説明すると、次のようなことが書かれている。 ↓2つのボールを、下の図ように壁と床のある空間に置く。 ↓その後、壁から遠い方のボールを、他方に向かって転がす。 後は、ボールが衝突する回数をカウントするだけで、円周率がわかるらしい。 これでも、なんだかよくわからない。 まず2つのボールが同じ質量である場合を考えてみよう。 まず、手前のボールが他方のボールにぶつかる(これが1回め)。 続いて、ぶつかったボールが移動して壁にぶつかる(これが2回め)。 壁にぶつかったボールが跳ね返ってきて

    2つのボールをぶつけると円周率がわかる - 大人になってからの再学習
    ikajigoku
    ikajigoku 2018/11/19
    おもしろい
  • Squares in Squares

    The following pictures show n unit squares packed inside the smallest known square (of side length s). For the n not pictured, the trivial packing (with no tilted squares) is the best known packing.

    ikajigoku
    ikajigoku 2018/02/26
    美しい
  • 日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス

    Q:これは何の構造を表しているでしょう? グラフ理論 上の構造のように、頂点(ノードともいいます)の集まりと、2つの頂点をつなぐ辺(エッジともいいます)の集まりでできたもののことを「グラフ」あるいは「ネットワーク」と呼び*1、このような構造を研究する分野こそが「グラフ理論(Graph theory)」です。今回はそんなグラフを使うと、身近なものの新たな側面が見えてくる話。 (余談ですが「グラフ」という用語は、数学だと関数のグラフとか円グラフみたいなやつもあって検索精度が悪いです。グラフ理論に関してわからないことがあった場合に「グラフ ○○」や「グラフ理論 ○○」とググるよりも、「ネットワーク ○○」とググったほうが得たい情報にリーチしやすいというライフハックが知られています) さて、冒頭のグラフです。グラフ理論の知識なんかひとつもなくても、このグラフから読み取れることはいくつもあります。例

    日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス
    ikajigoku
    ikajigoku 2018/02/01
    おもしろかった。これを機に東京一極集中を分散させよう。