タグ

Wikipediaとアルゴリズムに関するomega314のブックマーク (14)

  • Reservoir sampling - Wikipedia

    Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items. The size of the population n is not known to the algorithm and is typically too large for all n items to fit into main memory. The population is revealed to the algorithm over time, and the algorithm cannot

  • メタヒューリスティクス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "メタヒューリスティクス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年8月) メタヒューリスティクスとは、組合せ最適化問題のアルゴリズムにおいて、特定の計算問題に依存しないヒューリスティクスのことである。 近年では、上記の定義から拡張され、特定の問題に依存しない、汎用性の高いヒューリスティクス全般を指すこともある。そのため、組合せ最適化問題のアルゴリズムに限らず、連続最適化問題に対するアルゴリズムも含む解釈も存在する。 概要[編集] 通常ある問題に対しての「解法」が存在するとき、その解法が適用できる範囲はその問題に対してのみで

  • Dammアルゴリズム - Wikipedia

    Dammアルゴリズムは、誤り検出の一種であるチェックディジットのアルゴリズムであり、全ての1桁入力誤りと全ての隣り合う2桁の入れ替え誤りを検出することができる。2004年にH. Michael Dammによって発表された[1]。 利点と欠点[編集] Dammアルゴリズムは、Verhoeffアルゴリズムと同様に、最も頻繁に起こる2種類の誤り、すなわち1桁の入力誤りと、(末尾に付け足されたチェックディジットとその直前の数字の入れ値替えを含む)隣り合う2桁の入れ違えの、2種類の誤りを検出できる[1][2]。しかしDammアルゴリズムは、Verhoeffアルゴリズムと異なり、実行に際し、専用に構成された置換表と位置に応じた冪乗表を必要としない。さらに、逆元の表も演算表の主対角成分が0の時は必要ない。 Dammアルゴリズムは10種を超えるチェックディジットを出力しないため、(ISBN10のチェックデ

    Dammアルゴリズム - Wikipedia
  • マトロイド - Wikipedia

    マトロイド(英: matroid)は、ある公理を満たす集合とそのべき集合の部分集合の組である。歴史的には、行列の一次独立・従属を一般化した概念であるが、多くの組合せ最適化問題をマトロイドあるいはより緩い独立性システムとコスト関数で定式化でき、特徴付けを行える等応用範囲は広い。特に組合せ最適化において、マトロイド上の最適化問題には単純な貪欲法によって多項式時間のアルゴリズムとは限らないものの最適解が得られることは非常に重要である。 定義[編集] E = {1, 2, 3} におけるそれぞれの例。左は(A1),(A2),(A3)を満たすからマトロイド。中央は(A1),(A2)を満たすから独立性システム。右は(A1),(A3)を満たすからグリードイド。 有限集合 E とその部分集合族 の組 (E, F) が[注 1] (A1) (A2) (A3) を満たすとき、マトロイドと呼ばれ、(A1) およ

    マトロイド - Wikipedia
  • 素数が無数に存在することの証明 - Wikipedia

    素数が無数に存在することの証明(そすうがむすうにそんざいすることのしょうめい)は、古くは紀元前3世紀頃のユークリッドの『原論』に記され、その後も多くの証明が与えられている。素数が無数に存在することは、しばしばユークリッドの定理(ユークリッドのていり、英: Euclid's theorem)と呼ばれる。 ユークリッド[編集] 『原論』第9巻命題20[1]で、素数が無数に存在することが示されている。その証明は、次の通りである[2]。 a, b, …, k を任意に与えられた素数のリストとする。その最小公倍数 P ≔ a × b × ⋯ × k に 1 を加えた数 P + 1 は、素数であるか、合成数のいずれかである。素数であれば、最初のリストに含まれない素数が得られたことになる。素数でなければ、何らかの素数 p で割り切れるが、p はやはり最初のリストに含まれない。なぜならば、リスト中の素数は

    omega314
    omega314 2017/08/26
    『古くは紀元前3世紀頃のユークリッドの『原論』に記され』 / 「ユークリッドの証明は、存在のみを示しており、具体的な構成の手続きを示していない」は誤解。
  • 最適化問題 - Wikipedia

    最適化問題(さいてきかもんだい、英: optimization problem)とは、特定の集合上で定義された実数値関数または整数値関数についてその値が最小(もしくは最大)となる状態を解析する問題である[1]。こうした問題は総称して数理計画問題(すうりけいかくもんだい、英: mathematical programming problem, mathematical program)、数理計画とも呼ばれる[1]。最適化問題は、自然科学、工学、社会科学などの多種多様な分野で発生する基的な問題の一つであり、その歴史は18世紀の変分問題に遡る[2]。1940年代に線型計画法が登場して以来、理論的な研究や数値解法の研究が非常に活発に行われ、その応用範囲はいろいろな分野に拡大されていった[1]。実世界の現象の数理的な解析に関わる問題や抽象的な理論の多くをこの最適化問題という一般的なくくりに入れるこ

  • 数値的安定性 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "数値的安定性" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年3月) 数値的安定性(すうちてきあんていせい、英: numerical stability)は、数値解析におけるアルゴリズムの望ましい属性の1つ。「安定性」の正確な定義は文脈に依存するが、基的にはアルゴリズムの正確性に関連する。 ある計算を実施する方法がいくつか存在することがあり、それらは理想的な実数や複素数では代数学的に等価だが、デジタルコンピュータで実行すると結果に差異が生じる。ある計算方法は途中で生じる誤差を弱めるし、別の計算方法は誤差を拡大させる。誤差を拡大

    数値的安定性 - Wikipedia
  • 数値解析 - Wikipedia

    バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃)。2の平方根の近似値は六十進法で4桁、十進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603 = 1.41421296... [1]。(Image by Bill Casselman) 数値解析(すうちかいせき、英: numerical analysis)は、計算機代数(英語版)とは対照的に、数値計算によって解析学の問題を近似的に解く数学の一分野である。 (狭義には「数値解析」とは「数値計算方法」の数学的な解析・分析(mathematical analysis of numerical methods)のことであり,広義の意味=数値を使って問題の解析・分析を行う(Analysis by numerical methods)・式でなく数値で計算を行う「数値計算」(numerical comput

    数値解析 - Wikipedia
  • 接頭符号 - Wikipedia

    接頭符号(せっとうふごう、英: Prefix code)は、語頭属性(prefix property)を満たす符号の事で、通常可変長符号である。主にデータ圧縮に使われる。接頭符号の例として可変長ハフマン符号がある。 日語では他に語頭符号、英語では prefix-free code、prefix condition code、comma-free code、instantaneous code(日語では瞬時復号可能符号)などとも呼ばれる。ハフマン符号は接頭符号を生成する数あるアルゴリズムの1つに過ぎないが、ハフマンのアルゴリズムを使わずに生成した接頭符号も「ハフマン符号」と呼ぶことがある。 接頭符号はエントロピー符号の一種で、従って可逆圧縮である。 またクラフトの不等式は、接頭符号として可能な符号語の長さの特性を示している。 接頭符号の定義とその意義[編集] 符号が語頭属性を満たすとは、

  • AKS素数判定法 - Wikipedia

    AKS素数判定法(AKSそすうはんていほう)は、与えられた自然数が素数であるかどうかを決定的多項式時間で判定できる、世界初のアルゴリズムである。ここで、素数判定法が多項式時間であるとは、与えられた自然数 が素数であるかどうかを判定するのにかかる時間が の多項式を上界とすることをいう。 の多項式ではないことに注意する必要がある。 AKS素数判定法は2002年8月6日に "PRIMES is in P" と題された論文で発表された。Agrawal-Kayal-Saxena 素数判定法としても知られ、論文の著者であるインド工科大学のマニンドラ・アグラワル教授と、2人の学生ニラジュ・カヤル、ナイティン・サクセナ(英語版)の3人の名前から付けられた。 この素数判定法が発見される以前にも、素数の判定方法は多数知られていたが、リーマン予想などの仮説を用いずに、決定的多項式時間で判定できるアルゴリズムは存

  • カーマーカーのアルゴリズム - Wikipedia

    カーマーカーのアルゴリズム(英: Karmarkar's algorithm)とは1984年、ナレンドラ・カーマーカーにより発見された線形計画問題の解法である。このアルゴリズムは、しばしば、カーマーカー法(英: Karmarkar's method)とも呼ばれる。また、このアルゴリズムを発明とする特許が米国や日で出願され、請求特許は時折カーマーカー特許 (Karmarkar's patent) とも呼称される。 カーマーカーのアルゴリズムは、線形計画問題に対する多項式時間アルゴリズムで初めての実用的なものである。楕円体法(英語版)も多項式時間アルゴリズムであるが、実用上の効率は良くない。 カーマーカーのアルゴリズムは内点法の一種である。内点法は、候補解を実行可能領域の境界に沿って更新する単体法とは異なり、実行可能領域の内部を通るよう更新する。この更新は解の精度を定数倍改善し、これを繰り返

    カーマーカーのアルゴリズム - Wikipedia
  • 停止性問題 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "停止性問題" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年1月) 計算可能性理論において停止性問題(ていしせいもんだい、英: halting problem)または停止問題は、「どんなチューリングマシン[注 1]、あるいは同様な計算機構についても、それが有限時間で停止するかを判定できるアルゴリズム」は可能か、という問題。 アラン・チューリングは1936年、停止性問題を解くアルゴリズムは存在しないことをある種の対角線論法のようにして証明した。 すなわち、そのようなアルゴリズムを実行できるチューリングマシンの存在を仮定すると「自身

    omega314
    omega314 2016/05/04
    低姿勢じゃないよ停止性。
  • アルゴリズム - Wikipedia

    アルゴリズム(英: algorithm[注 1])とは、解が定まっている「計算可能」問題に対して、その解を正しく求める手続きをさす[注 2]。あるいはそれを形式的に表現したもの。 実用上は、アルゴリズムの実行に要する記憶領域の大きさや完了までに要する時間(空間計算量と時間計算量)が小さいこと、特に問題の規模を大きくした際に必要な記憶領域や計算量が急激に大きくならないことが重要となる。 アルゴリズムの実行は形態によらない。コンピュータプログラムはコンピュータ上に実装されたアルゴリズムの例である。 概要[編集] フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 岩波国語辞典「算法」に、まず「計算の方法」とした後に2番目の詳細な語義でalgorithmの訳として、 特に、同類の問題一般に対し、有限回の基的操作を、指示の順を追って実行すれば、

    アルゴリズム - Wikipedia
  • マルコフ連鎖モンテカルロ法 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2016年3月) マルコフ連鎖モンテカルロ法(マルコフれんさモンテカルロほう、英: Markov chain Monte Carlo methods、通称MCMC)とは、求める確率分布を均衡分布として持つマルコフ連鎖を作成することによって確率分布のサンプリングを行う種々のアルゴリズムの総称である。具体的には、同時事後分布に従う乱数を継時的に生成する。代表的なMCMCとしてメトロポリス・ヘイスティングス法やギブスサンプリングがある。 MCMCで充分に多くの回数の試行を行った後のマルコフ連鎖の状態は求める目標分布の標として用いられる。試行の回数を増やすとともにサンプルの品質も向上する。 求められる特性を持つマルコフ連鎖を作成することは通常難しくない。問題は許容で

  • 1