タグ

Wikipediaと情報に関するomega314のブックマーク (16)

  • カルバック・ライブラー情報量 - Wikipedia

    カルバック・ライブラー情報量(カルバック・ライブラーじょうほうりょう、英: Kullback–Leibler divergence)は2つの確率分布の差異を計る尺度である。 確率論と情報理論で利用され様々な呼び名がある。以下はその一例である: カルバック・ライブラー・ダイバージェンス(KLダイバージェンス) 情報ダイバージェンス(英: information divergence) 情報利得(英: information gain) 相対エントロピー(英: relative entropy) カルバック・ライブラー距離 だたしこの計量は距離の公理を満たさないので、数学的な意味での距離ではない。 応用上は、「真の」確率分布 P とそれ以外の任意の確率分布 Q に対するカルバック・ライブラー情報量が計算される事が多い。たとえば P はデータ、観測値、正確に計算で求められた確率分布などを表し、Q

  • 食事する暗号学者の問題 - Wikipedia

    事する暗号学者の問題[1] (dining cryptographers problem)とは、匿名による情報発信法やその匿名性の証明に関する問題である。 問題[編集] 3人以上の暗号学者達が円卓で事を取っていた。 そこにウェイターがやって来て匿名の何者かが彼ら全員分の事代を支払ったと学者達に伝えた。学者のうちの誰かが払ったのかもしれないし、学者達の雇い主であるNSA(アメリカ国家安全保障局)が支払ったのかもしれない。どちらが支払ったのか知りたいが、もし学者のうちの誰かが支払ったのなら、匿名で支払ったという意思を尊重したい。 どちらが支払ったのか、支払った学者を特定することなく知る方法はあるだろうか? 解決法: 事する暗号学者のプロトコル[編集] 例として4人の場合を考える。 まず右隣りの学者との間で、メニューの裏でこっそりコインをトスする。 結果は2人だけで共有し、他の学者には秘

    食事する暗号学者の問題 - Wikipedia
  • 接頭符号 - Wikipedia

    接頭符号(せっとうふごう、英: Prefix code)は、語頭属性(prefix property)を満たす符号の事で、通常可変長符号である。主にデータ圧縮に使われる。接頭符号の例として可変長ハフマン符号がある。 日語では他に語頭符号、英語では prefix-free code、prefix condition code、comma-free code、instantaneous code(日語では瞬時復号可能符号)などとも呼ばれる。ハフマン符号は接頭符号を生成する数あるアルゴリズムの1つに過ぎないが、ハフマンのアルゴリズムを使わずに生成した接頭符号も「ハフマン符号」と呼ぶことがある。 接頭符号はエントロピー符号の一種で、従って可逆圧縮である。 またクラフトの不等式は、接頭符号として可能な符号語の長さの特性を示している。 接頭符号の定義とその意義[編集] 符号が語頭属性を満たすとは、

  • 通信技術の年表 - Wikipedia

    通信技術の年表(つうしんぎじゅつのねんぴょう)とは、通信技術歴史に関する年表である。ここでは主要な項目を挙げ、インターネット、放送、電話、郵便など各分野の詳細年表については各項目に譲る。また、通信技術歴史も参照のこと。 主要年表[編集] 紀元前19世紀頃 - 古代エジプトで現在知られる最古の暗号 → 暗号史 紀元前6-4世紀頃 - 古代ペルシアで街道(王の道)と駅伝制の整備。 2世紀初頭 - 中国で実用的な製紙法の発明。情報の運搬が容易に。→紙、蔡倫 狼煙(のろし)を使った通信。 飛脚による親書通信。 望遠鏡の発明。視覚通信への応用により文字コード伝達が可能となる。 郵便制度。 鉄道の腕木信号 伝書鳩 手旗信号 - 腕木通信 1800年代[編集] 1832年 - シリングが電信機を発明。 1837年 - モールスがモールス符号を考案。 1850年 - イギリス・フランス間で海底ケーブル

  • Data analysis - Wikipedia

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.[1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains.[2] In today's business wor

    Data analysis - Wikipedia
  • 二人零和有限確定完全情報ゲーム - Wikipedia

    二人零和有限確定完全情報ゲーム(ふたり ゼロわ ゆうげん かくてい かんぜんじょうほう ゲーム)は、ゲーム理論によるゲームの分類の一つ。 概要[編集] 二人:プレイヤーの数が二人 零和(「ゼロ和」と読むのが一般的だが「レイワ」とも読む):プレイヤー間の利害が完全に対立し、一方のプレイヤーが利得を得ると、それと同量の損害が他方のプレイヤーに降りかかる 有限:ゲームが必ず有限の手番で終了する 確定:サイコロのようなランダムな要素が存在しない 完全情報:全ての情報が両方のプレイヤーに公開されている という特徴を満たすゲームのことである[1]。伝統的なボードゲームの多くがこのカテゴリに属する(詳細は「#具体例」を参照)。 なお、 ゲーム理論でいうプレーヤーとはゲームを行う際にゲームの着手を決定する、意思決定する主体を指す。コンピュータであってもよく、また、最終的に意思決定が一つに定まるのであれば、

  • 超光速通信 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Superluminal communication|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手

  • ゼロ知識証明 - Wikipedia

    暗号学において、ゼロ知識証明(ぜろちしきしょうめい、zero-knowledge proof、略称:ZKP[1])とは、ある人が他の人に、自分の持っている(通常、数学的な)命題が真であることを伝えるのに、真であること以外の何の知識も伝えることなく証明できるようなやりとりの手法である。ゼロ知識対話証明(ZKIP)とも呼ばれる。 概要[編集] ゼロ知識証明の研究は、ある人が,秘密の知識(パスワードなど)を所持していることをもって,人であることを他の人に示したいが,この秘密自体は誰にも開示しなくてよい認証方式を実現することが動機である。もっとも、パスワード認証というのはゼロ知識証明で扱う一般的な例ではない。ゼロ知識証明によるパスワード認証は特殊な応用例である。 ゼロ知識証明で証明される命題には、巨大な合成数の素因子(素因数分解の解)を知っている、離散対数問題(DLP)の解を知っているなどの公開

    ゼロ知識証明 - Wikipedia
  • マクスウェルの悪魔 - Wikipedia

    マクスウェルの悪魔(マクスウェルのあくま、Maxwell's demon)とは、1867年ごろ、スコットランドの物理学者ジェームズ・クラーク・マクスウェルが提唱した思考実験、ないしその実験で想定される架空の、働く存在である。マクスウェルの魔、マクスウェルの魔物、マクスウェルのデーモンなどともいう。 分子の動きを観察できる架空の悪魔を想定することによって、熱力学第二法則で禁じられたエントロピーの減少が可能であるとした。 熱力学の根幹に突き付けられたこの難問は1980年代に入ってようやく一応の解決を見た。 マクスウェルの提起した問題[編集] マクスウェルが考えた仮想的な実験内容とは以下のようである(Theory of Heat、1872年)。 マクスウェルの悪魔。分子を観察できる悪魔は仕事をすることなしに温度差を作り出せるようにみえる。 均一な温度の気体で満たされた容器を用意する。 このとき温

  • 違法素数 - Wikipedia

    違法素数(いほうそすう/英: illegal prime)とは、素数のうち、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種である。 2001年、違法素数の1つが発見された。この数はある規則に従って変換すると、DVDのデジタル著作権管理を回避するコンピュータプログラムとして実行可能であり、そのプログラムはアメリカ合衆国のデジタルミレニアム著作権法で違法とされている[1]。 経緯[編集] DVDのコピーガードを破るコンピュータプログラムDeCSSのソースコード 1999年、ヨン・レック・ヨハンセンはDVDのコピーガード (Content Scramble System; CSS)を破るコンピュータプログラム「DeCSS」を発表した。ところが2001年5月30日、アメリカ合衆国の裁判所は、このプログラムの使用を違法としただけではなく、ソースコードの公表も違法である

  • レーベンシュタイン距離 - Wikipedia

    レーベンシュタイン距離(レーベンシュタインきょり、英: Levenshtein distance)は、二つの文字列がどの程度異なっているかを示す距離の一種である。編集距離(へんしゅうきょり、英: edit distance)とも呼ばれる。具体的には、1文字の挿入・削除・置換によって、一方の文字列をもう一方の文字列に変形するのに必要な手順の最小回数として定義される[1]。名称は、1965年にこれを考案したロシアの学者ウラジーミル・レーベンシュタイン (露: Влади́мир Левенште́йн) にちなむ。 レーベンシュタイン距離は、同じ文字数の単語に対する置換編集に使われているハミング距離の一般化であると見なすことが可能である。レーベンシュタイン距離の更なる一般化として、例えば一回の操作で二文字を変換する等の方法が考えられる。 例[編集] 実際的な距離の求め方を例示すれば、「kitt

    omega314
    omega314 2013/05/11
    距離の公理満たすのは…ほぼ明らかか。 / 正規化(normalization)の話は書かれてないのね。
  • 赤池情報量規準 - Wikipedia

    赤池情報量規準(あかいけじょうほうりょうきじゅん; 元々は An Information Criterion, のちに Akaike's Information Criterionと呼ばれるようになる)は、統計モデルの良さを評価するための指標である。単にAICとも呼ばれ、この呼び方のほうが一般的である。統計学の世界では非常に有名な指標であり、多くの統計ソフトに備わっている。元統計数理研究所所長の赤池弘次が1971年に考案し1973年に発表した[1]。 AICは、「モデルの複雑さと、データとの適合度とのバランスを取る」ために使用される。例えば、ある測定データを統計的に説明するモデルを作成することを考える。この場合、パラメータの数や次数を増やせば増やすほど、その測定データとの適合度を高めることができる。しかし、その反面、ノイズなどの偶発的な(測定対象の構造と無関係な)変動にも無理にあわせてしま

  • 事象の地平面 - Wikipedia

    事象の地平面(じしょうのちへいめん、(英: event horizon)は、物理学・相対性理論の概念で、情報伝達の境界面である。シュバルツシルト面や事象の地平線(じしょうのちへいせん)ということもある。 情報は光や電磁波などにより伝達され、その最大速度は光速であるが、光などでも到達できなくなる領域(距離)が存在し、ここより先の情報を我々は知ることができない。この境界を指し「事象の地平面」と呼ぶ。 ブラックホール[編集] 重力が大きく、光でさえも脱出不可能な天体をブラックホールという。従って、ブラックホールの存在は、ブラックホールに落ち込む物質が放つ放射や、ブラックホール近傍の天体の運動など、間接的な観測事実に頼ることになる。ブラックホールは、一般相対性理論が予言する産物であり、M87および銀河系の中心にあるブラックホールは既に直接観測された。 一般相対性理論において、ブラックホールを厳密に

    事象の地平面 - Wikipedia
  • コルモゴロフ複雑性 - Wikipedia

    コルモゴロフ複雑性(コルモゴロフふくざつせい、英語: Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。 この画像はフラクタル図形であるマンデルブロ集合の一部である。このJPEGファイルのサイズは17KB以上(約140,000ビット)ある。ところが、これと同じファイルは140,000ビットよりも遥かに小さいコンピュータ・プログラムによって作成することが出来る。従って、このJPEGファイルのコルモゴロフ複雑性は140,000よりも遥かに小さい。 コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲー

    コルモゴロフ複雑性 - Wikipedia
  • 情報 - Wikipedia

    この項目では、総論について説明しています。 高等学校の普通教科および専門教科については「情報 (教科)」をご覧ください。 Wikipediaテンプレートについては「Template:情報」をご覧ください。 情報(じょうほう、英語: information、ラテン語: informatio)とは あるものごとの内容や事情についての知らせ[1]のこと。 文字・数字などの記号やシンボルの媒体によって伝達され、受け手において、状況に対する知識をもたらしたり、適切な判断を助けたりするもの[1]のこと。 生体が働くために用いられている指令や信号[1]のこと。 (情報理論(通信理論)での用法)価値判断を除いて、量的な存在としてとらえたそれ 概説[編集] 情報とは何かという問いに、ただひとつの答えを与えることは困難である[2]。 対応する英語の "information" は、informの名詞形であり、

    情報 - Wikipedia
  • デジタル物理学 - Wikipedia

    デジタル物理学(デジタルぶつりがく、英: digital physics)とは、「宇宙は質的に情報により記述可能であり、それ故、計算可能である」という仮定によって導かれる、物理学及び宇宙論における理論的展望の総称である。このような仮定を立てるとき、宇宙は、コンピュータプログラムの出力、あるいはある種の巨大なデジタル計算デバイスとして理解される。 デジタル物理学は、以下の一つ以上の仮説を基礎としている。(なお、記載の順番はその主張の強さを示す):宇宙(あるいは現実)は、 質的に情報である(ただし、各情報のオントロジーがデジタルである必要はない) 質的に計算可能である デジタルに記述可能である 質においてデジタルである それ自身が壮大なコンピュータ(計算機)である シミュレーテッドリアリティ実行の結果である 歴史[編集] すべてのコンピュータは情報理論、統計力学および量子力学の原理と明

    omega314
    omega314 2012/01/08
    宇宙はデジタルかアナログか。
  • 1