タグ

Wikipediaと数学に関するomega314のブックマーク (364)

  • メタヒューリスティクス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "メタヒューリスティクス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年8月) メタヒューリスティクスとは、組合せ最適化問題のアルゴリズムにおいて、特定の計算問題に依存しないヒューリスティクスのことである。 近年では、上記の定義から拡張され、特定の問題に依存しない、汎用性の高いヒューリスティクス全般を指すこともある。そのため、組合せ最適化問題のアルゴリズムに限らず、連続最適化問題に対するアルゴリズムも含む解釈も存在する。 概要[編集] 通常ある問題に対しての「解法」が存在するとき、その解法が適用できる範囲はその問題に対してのみで

  • 二元数 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "二元数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2016年1月) 数学における二元数(にげんすう、英: binarion)とは、2次元の多元数、すなわち実数体上2次元の単位的結合多元環の元のことである。各二元数 x は適当な基底 {1, u} の実数係数の線型結合 x = a + bu (a, b ∈ R) の形に表される。 多元環における積は双線型であるから、2つの二元数 x = a + bu, y = c + du に対して これが再び二元数となる(つまり乗法について閉じている)ためには、u の平方が再び {1, u} の線型

  • Dammアルゴリズム - Wikipedia

    Dammアルゴリズムは、誤り検出の一種であるチェックディジットのアルゴリズムであり、全ての1桁入力誤りと全ての隣り合う2桁の入れ替え誤りを検出することができる。2004年にH. Michael Dammによって発表された[1]。 利点と欠点[編集] Dammアルゴリズムは、Verhoeffアルゴリズムと同様に、最も頻繁に起こる2種類の誤り、すなわち1桁の入力誤りと、(末尾に付け足されたチェックディジットとその直前の数字の入れ値替えを含む)隣り合う2桁の入れ違えの、2種類の誤りを検出できる[1][2]。しかしDammアルゴリズムは、Verhoeffアルゴリズムと異なり、実行に際し、専用に構成された置換表と位置に応じた冪乗表を必要としない。さらに、逆元の表も演算表の主対角成分が0の時は必要ない。 Dammアルゴリズムは10種を超えるチェックディジットを出力しないため、(ISBN10のチェックデ

    Dammアルゴリズム - Wikipedia
  • アーノルドの猫写像 - Wikipedia

    写像がどのように単位正方形を延ばし、モジュロ演算に対してどのようにその断片が再構成されるかを図示したもの。矢印のついた直線は、固有空間が縮小および拡大される方向を表す。 数学におけるアーノルドの写像(アーノルドのねこしゃぞう、英: Arnold's cat map)は、トーラスからそれ自身へのあるカオス写像で、1960年代にの画像を使ってその効果を示したウラジーミル・アーノルドの名にちなむ[1]。 商空間 としてのトーラス を考える。アーノルドの写像は、次の式で与えられる変換 である: また同値であるが、行列を使うと次のように表すことも出来る: すなわち、単位長は正方形の像の幅と等しいものとして、この像は 1 単位上にせん断された後、1 単位右にせん断され、単位正方形の外側にあるものはすべてその内側に来るように戻される。 性質[編集] Γ は行列式が 1 であるため、可逆であり、その

    アーノルドの猫写像 - Wikipedia
  • 数学の統一理論 - Wikipedia

    この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2023年8月) 正確性に疑問が呈されています。(2023年10月) 出典検索?: "数学の統一理論" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL 数学の統一理論(すうがくのとういつりろん、英: unified theory of mathematics)に到達するためのいくつかの試みが歴史的に行われてきた。数学者は、すべての主題(科目)は一つの理論に収まるべきであるという明確な展望を抱いている。[要出典] 歴史的側面[編集] 統一化のプロセスには、統制のための規律として「数学を構成するところのものは何であるのか」を定義することが一つの助け

  • Conjugate prior - Wikipedia

    In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numer

  • Exponential family - Wikipedia

    A number of common distributions are exponential families, but only when certain parameters are fixed and known. For example: binomial (with fixed number of trials) multinomial (with fixed number of trials) negative binomial (with fixed number of failures) Note that in each case, the parameters which must be fixed are those that set a limit on the range of values that can possibly be observed. Exa

  • 秘書問題 - Wikipedia

    最善を選択する確率は に収束する。 別の解法[編集] 秘書問題や類似する問題の直接的解法として Odds algorithm がある。 ヒューリスティックの性能[編集] Stein, Seale, and Rapoport (2003)[1]では、秘書問題を解く際に使われる心理学的にもっともらしいヒューリスティクスの成功確率を検討している。彼らが検討したヒューリスティクスは以下のようなものである。 カットオフ規則(CR) 最初の人の応募者を採用しない。その後、最初の候補者(そこまでで1位の応募者)を採用する。これは、 の CSP の最適ポリシーの特殊ケースである。 候補者カウント規則(CCR) 番目の候補者を選択する。最初の応募者をスキップするわけではない。単に候補者(それまでの1位)を数えるだけで、応募者の順序を深く考慮しているわけではない。 非候補者の次規則(SNCR) 非候補者(そこ

  • Histogram - Wikipedia

    For the histogram used in digital image processing, see Image histogram and Color histogram. A histogram is a visual representation of the distribution of quantitative data. The term was first introduced by Karl Pearson.[1] To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many val

    Histogram - Wikipedia
    omega314
    omega314 2018/08/29
    ヒストグラム。
  • 位相多様体 - Wikipedia

    位相幾何学という数学の分野において、位相多様体(いそうたようたい、英: topological manifold)とは、以下に定義される意味で実 n 次元空間に局所的に似ている(分離空間でもある)位相空間である。位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす。 「多様体」は位相多様体を意味することもあるし、より多くは、追加の構造を持った位相多様体を指す。例えば可微分多様体は可微分構造を備えた位相多様体である。任意の多様体は、単に追加の構造を忘れることによって得られる、台となる位相多様体を持つ。多様体の概念の概観はその記事に与えられている。この記事は純粋に多様体の位相的側面に焦点を当てる。 定義[編集] 位相空間 X が局所ユークリッド的 (locally Euclidean) とは、非負整数 n が存在して、X の任意の点がユークリッド空間 En(あるいは同じことだが実 n

  • ルジンの問題 - Wikipedia

    ルジンの問題(Luzin - のもんだい)とは、正方形に関してニコライ・ルジン (Nikolai Luzin) が考えた問題である。 「任意の正方形を、2個以上の全て異なる大きさの正方形に分割できるか」という問題であり、ルジンはこの問題の解は存在しないと予想したが、その後いくつかの例が発見された。 最小の解[編集] 21個の正方形に分割 最小の解は21個で、A. J. W. Duijvestijn がコンピュータを使って発見し、それが最小の解であることを証明した[1]。1辺 112 の正方形を、一辺の長さがそれぞれ 2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 の計21枚の正方形で、隙間なく埋めつくすことができる。(オンライン整数列大辞典の数列 A014530) 正方形を上辺から順番

  • 日本空間 (位相空間論) - Wikipedia

    位相空間論において日空間 (Japanese space) とは、閉包を保つような局所近傍系を持つ空間のことである。 定義[編集] 位相空間 の集合族 が閉包を保つとは、の任意の合併が閉包と交換することである。 つまり、任意の に対し、 となることである。 位相空間 がある点 において日である (X is Japanese at x) とは、 の局所開近傍基であって、閉包を保つものが存在することである。が全ての点で日であるとき、単には日空間である (X is Japanese) という。 位相空間 がある点 において弱日である (X is weakly Japanese at x) とは、 の局所閉近傍基であって、閉包を保つものが存在することである。が全ての点で弱日であるとき、単には弱日空間である (X is weakly Japanese) という。 性質[編集] 以下、位

    omega314
    omega314 2017/11/11
    『>日本空間は弱日本空間である。しかし、逆に弱日本空間が日本空間であるか、あるいは弱日本だが日本でない空間があるかどうかはわかっていない >第一可算な空間は日本空間である >ポーランド空間は日本空間である』
  • 行列の乗法 - Wikipedia

    数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法(ぎょうれつのじょうほう)は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、加法や減法(英語版)の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって

    行列の乗法 - Wikipedia
    omega314
    omega314 2017/11/02
    アダマール積、フロベニウス積、クロネッカー積。
  • ディラックのデルタ関数 - Wikipedia

    数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(

    ディラックのデルタ関数 - Wikipedia
  • カルバック・ライブラー情報量 - Wikipedia

    カルバック・ライブラー情報量(カルバック・ライブラーじょうほうりょう、英: Kullback–Leibler divergence)は2つの確率分布の差異を計る尺度である。 確率論と情報理論で利用され様々な呼び名がある。以下はその一例である: カルバック・ライブラー・ダイバージェンス(KLダイバージェンス) 情報ダイバージェンス(英: information divergence) 情報利得(英: information gain) 相対エントロピー(英: relative entropy) カルバック・ライブラー距離 だたしこの計量は距離の公理を満たさないので、数学的な意味での距離ではない。 応用上は、「真の」確率分布 P とそれ以外の任意の確率分布 Q に対するカルバック・ライブラー情報量が計算される事が多い。たとえば P はデータ、観測値、正確に計算で求められた確率分布などを表し、Q

  • マトロイド - Wikipedia

    マトロイド(英: matroid)は、ある公理を満たす集合とそのべき集合の部分集合の組である。歴史的には、行列の一次独立・従属を一般化した概念であるが、多くの組合せ最適化問題をマトロイドあるいはより緩い独立性システムとコスト関数で定式化でき、特徴付けを行える等応用範囲は広い。特に組合せ最適化において、マトロイド上の最適化問題には単純な貪欲法によって多項式時間のアルゴリズムとは限らないものの最適解が得られることは非常に重要である。 定義[編集] E = {1, 2, 3} におけるそれぞれの例。左は(A1),(A2),(A3)を満たすからマトロイド。中央は(A1),(A2)を満たすから独立性システム。右は(A1),(A3)を満たすからグリードイド。 有限集合 E とその部分集合族 の組 (E, F) が[注 1] (A1) (A2) (A3) を満たすとき、マトロイドと呼ばれ、(A1) およ

    マトロイド - Wikipedia
  • 素数が無数に存在することの証明 - Wikipedia

    素数が無数に存在することの証明(そすうがむすうにそんざいすることのしょうめい)は、古くは紀元前3世紀頃のユークリッドの『原論』に記され、その後も多くの証明が与えられている。素数が無数に存在することは、しばしばユークリッドの定理(ユークリッドのていり、英: Euclid's theorem)と呼ばれる。 ユークリッド[編集] 『原論』第9巻命題20[1]で、素数が無数に存在することが示されている。その証明は、次の通りである[2]。 a, b, …, k を任意に与えられた素数のリストとする。その最小公倍数 P ≔ a × b × ⋯ × k に 1 を加えた数 P + 1 は、素数であるか、合成数のいずれかである。素数であれば、最初のリストに含まれない素数が得られたことになる。素数でなければ、何らかの素数 p で割り切れるが、p はやはり最初のリストに含まれない。なぜならば、リスト中の素数は

    omega314
    omega314 2017/08/26
    『古くは紀元前3世紀頃のユークリッドの『原論』に記され』 / 「ユークリッドの証明は、存在のみを示しており、具体的な構成の手続きを示していない」は誤解。
  • セオドア・カジンスキー - Wikipedia

    高校時代のカジンスキー セオドア・ジョン・カジンスキー(英語: Theodore John Kaczynski、1942年5月22日 - 2023年6月10日)は、アメリカ合衆国のテロリスト。数学者でもあり、最年少のカリフォルニア大学バークレー校助教授でもあった。アナーキズムに関する著作もある[1][2][3]。 数学に関しては神童であったが[4]、1969年に大学のキャリアを捨てて、自給自足に近い原始的な生活をしていた。FBIのコードネームからユナボマーとも呼ばれる。 人物[編集] 1978年5月から1995年にかけて、全米各地で現代科学技術に関わりのある人々をターゲットにした連続爆弾事件を起こして3人を死亡させ、23人に重軽傷を負わせた。彼は革命を開始するつもりであり、工業化を批判するとともに原始的な生活の復活(アナルコ・プリミティヴィズム)を称揚して現代社会批判も行っている[5]。

    セオドア・カジンスキー - Wikipedia
    omega314
    omega314 2017/08/15
    『セオドア・ジョン・カジンスキー(Theodore John Kaczynski、1942年5月22日 - )はアメリカの数学者、テロリスト。「テッド・カジンスキー」「ユナボマー」などとも呼ばれる。』
  • ゼロの偶奇性 - Wikipedia

    Deborah Loewenberg Ballは、三年生のあるクラスの生徒たちの奇数と偶数とゼロについての考え方を解析した。彼らは、ちょうど四年生のグループと議論していた。生徒たちはゼロの偶奇性、偶数の規則、およびいかに数学がなされるかを議論していた。ゼロについての主張は、表に見るように多数の形式があった[23]。 Ballと彼女の共著者は、このエピソードを、通常の演習における機械的解法での自律性の減少とは異なり、いかにして生徒たちが「学校で数学をする」ことができるかを示したものだ、と論じた[24]。 この研究論文における主題の一つは、生徒たちの概念像と概念定義(英語版)の間の葛藤である[25]。 (Levenson, Tsamir & Tirosh 2007)の六年生は二人共、2の倍数として、あるいは2で割り切れる数として偶数の定義を与えられていた。しかし彼らは最初、この定義をゼロに応用

    ゼロの偶奇性 - Wikipedia
  • 関数方程式 - Wikipedia

    数学、及びその応用分野において、関数方程式(かんすうほうていしき、functional equation)は、単一の(または複数の)関数のある点と他の点での値の関係を示す方程式である。関数の性質は、与えられた条件を満たす関数方程式の種類などをもとに決定することができる。通常は代数方程式に帰着できない方程式を指す。 リーマンゼータ関数やその類似物が満たす特殊な関数方程式は、関数等式と呼ばれることが多い。 例[編集] リーマンゼータ関数 ζ は関数方程式 を満たす。ただし大文字の Γ はガンマ関数である。 ガンマ関数は以下の関数方程式を満たす。ガンマ関数は、以下の3の方程式からなる系を満たす唯一の関数である。 関数方程式 は k 次の保型形式を定義する。ただし a、b、c、d は ad − bc = 1 を満たす整数とする。 その他にも多くの例を挙げることができる。 すべての指数関数は を満