並び順

ブックマーク数

期間指定

  • から
  • まで

41 - 80 件 / 1222件

新着順 人気順

physicsの検索結果41 - 80 件 / 1222件

  • 京都高島屋の広告コピー「Save the world from Kyoto」に世界中が震える

    ん @coolbizhead 憲法も物理法則も無視する「景観条例」はそれまで京都に封じ込められていたはずだった。二条城の大屏風からから飛び出た金魚の群れが日本中に「景観条例」をばら撒いた。「美しくない」事物が消え失せる。翌朝日本列島は沈黙した。金魚達は海を渡り、新大統領は叫ぶ。"Save the world from Kyoto!" twitter.com/ninja_padrino/… 2020-11-08 17:40:39

      京都高島屋の広告コピー「Save the world from Kyoto」に世界中が震える
    • https://utokyo-icepp.github.io/qc-workbook/welcome.html

      • 「事象の地平面」なんてなかった? ブラックホールに新理論、理研が発表 “情報問題”にも筋道

        ブラックホールには一度入ったが最後、光さえも脱出できないほど強い重力がかかる領域の境界「事象の地平面」があるといわれている。しかし、理化学研究所はこのほど「ブラックホールは事象の地平面を持たない高密度な物体である」とする、これまでの通説とは異なる研究結果を発表した。 従来、ブラックホールに落ちたリンゴの情報がどうなるのかはよく分かっていなかったが、今回の研究を進めていけばブラックホール中の情報を追跡できるようになり、ブラックホールを情報のストレージにできる可能性も開けるという この理論を発表したのは、同研究所の横倉祐貴上級研究員らの共同研究チーム。従来のブラックホール理論が一般相対性理論に基づくのに対し、研究チームは一般相対性理論と量子力学に基づいて理論を組み立てた。 従来の理論では、光も脱出できない内側の領域をブラックホール、その境界を事象の地平面といい、ブラックホールの質量によって決ま

          「事象の地平面」なんてなかった? ブラックホールに新理論、理研が発表 “情報問題”にも筋道
        • 「エントロピー」という概念がよくわかりません。部屋は汚くなるが、キレイにはならない、みたいな例えをたまに聞きますが。。。良ければこの概念を理解するために有益そうなことを教えて頂きたいです。 | mond

          「エントロピー」という概念がよくわかりません。部屋は汚くなるが、キレイにはならない、みたいな例えをたまに聞きますが。。。良ければこの概念を理解するために有益そうなことを教えて頂きたいです。 エントロピーって「乱雑さ」と関係するとか思っている人が多いですよね。僕が熱力学の講義をするとき、最初の時間に「エントロピーってなんだと思う?」って訊くと物理学科の学生さえみんな「乱雑さ」って答えます。 でもね。エントロピーって意外かもしれないけどもともと、乱雑さとは何も関係なくみつかったものなんです。専門的な難しい言葉をつかうとエントロピーって「断熱系の準静的な変化では保存する量」ということになります。断熱ってようするに熱のやりとりがないことですね。力学とかでも摩擦を考えないとエントロピーは関係ないですが、摩擦を考えると熱が発生するので途端にエントロピーが関係してきます(が、普通の力学の教科書で熱が発生

            「エントロピー」という概念がよくわかりません。部屋は汚くなるが、キレイにはならない、みたいな例えをたまに聞きますが。。。良ければこの概念を理解するために有益そうなことを教えて頂きたいです。 | mond
          • 烏海@切り絵 on Twitter: "家庭教師のトライくんが中学から高校までの全ての授業を動画に載せてるので、落書きする時とかに聞いてると勉強になるのでとてもおすすめです 選択授業で取れなかった高校物理とかをしっかり学べる最高な環境 あと授業中の落書きみたいな気分になって真剣に聞きながら集中して描くことができる"

            家庭教師のトライくんが中学から高校までの全ての授業を動画に載せてるので、落書きする時とかに聞いてると勉強になるのでとてもおすすめです 選択授業で取れなかった高校物理とかをしっかり学べる最高な環境 あと授業中の落書きみたいな気分になって真剣に聞きながら集中して描くことができる

              烏海@切り絵 on Twitter: "家庭教師のトライくんが中学から高校までの全ての授業を動画に載せてるので、落書きする時とかに聞いてると勉強になるのでとてもおすすめです 選択授業で取れなかった高校物理とかをしっかり学べる最高な環境 あと授業中の落書きみたいな気分になって真剣に聞きながら集中して描くことができる"
            • 小野伸二 / shinji ono on Instagram: "ちびっこ達の未来に夢を🤙 今回はトラップのコツ⚽️ #トラップ #ピタッと #チャレンジ #休校ドリーム #休校ドリームサッカー"

              24K likes, 362 comments - shinjiono7 on March 26, 2020: "ちびっこ達の未来に夢を🤙 今回はトラップのコツ⚽️ #トラップ #ピタッと #チャレンジ #休校ドリ�...".

                小野伸二 / shinji ono on Instagram: "ちびっこ達の未来に夢を🤙 今回はトラップのコツ⚽️ #トラップ #ピタッと #チャレンジ #休校ドリーム #休校ドリームサッカー"
              • Googleが量子超越を達成 -新たな時代の幕開けへ(前編)

                2019年10月23日、Googleが量子超越を実現したという論文を公開し、量子コンピュータの歴史に新たな1ページが刻まれた。 「量子超越」は、量子コンピュータの歴史における大きな一歩である。Googleの研究チームは、最速のスーパーコンピュータを使っても1万年かかる問題を、Googleの53量子ビット(qubit)の量子コンピュータは10億倍速い、200秒で解けることを示したという。 今後、Googleが示した量子超越性に対して様々な角度から検証がなされていくだろう。量子超越性は、物理学及び計算科学の歴史の1ページに刻まれるべきマイルストーンである一方、量子超越性や量子コンピュータの実用化についても、様々な憶測や誤解が広まっている。 この記事では、Googleが示した量子超越性について前編と後編の2つのパートに分けて解説していく。 前編では、量子超越性を実証するための基本的な考え方、量子

                  Googleが量子超越を達成 -新たな時代の幕開けへ(前編)
                • 錯視は意識の現象的研究に役立ちますが、更に人間が見ている世界は最終的に脳内で加工されたものであることを教えてくれています。

                  Masahiro Hotta @hottaqu 「情報は情報のみで存在し得るのか?」「量子力学が情報を扱う理論であるなら、実在を表す本当の理論を」このようなことを素朴に疑問に思われる方もまだ多いと思います。「実在」というものが日常生活であまりにも当たり前のように刷り込まれているから当然の反応でもありますが、それは幻想なのです。 2019-12-28 18:40:32 Masahiro Hotta @hottaqu でもよく考え下さい。睡眠から覚めて目に入る世界は、光(つまり素粒子である光子の集まり)が持ってくる情報に過ぎません。例えば錯視は意識の現象的研究に役立ちますが、更に人間が見ている世界は最終的に脳内で加工されたものであることを教えてくれています。 2019-12-28 18:42:12

                    錯視は意識の現象的研究に役立ちますが、更に人間が見ている世界は最終的に脳内で加工されたものであることを教えてくれています。
                  • 蒸発するブラックホールの内部を理論的に記述

                    理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 本研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

                      蒸発するブラックホールの内部を理論的に記述
                    • HDDを完全消去して安全にパソコンを廃棄する方法

                      パソコンを廃棄するとき、よく注意点として挙げられるのが「HDDの内容は完全消去する」というものです。HDDのなかには、さまざまな個人情報が詰まっているための注意ですが、単にフォーマットをしただけではHDDの完全消去は不十分。復元ソフトを使うことで情報を盗み出すことも可能なため、月の方法でHDDは完全に内容を消去する必要があるのです。 HDD完全消去はフォーマットでは不可能 HDDを完全消去するといえば、まず再フォーマットを行うという方法を思い浮かべる人が多いでしょう。ところが、この方法で消去されるHDDの情報は、ディレクトリと呼ばれるファイルが格納されている場所を保管した部分のみで、肝心のファイル内の情報はそのまま残ってしまうのです。 再フォーマットを行ったHDDは、通常の方法でパソコンに接続しても空のHDDとして認識されます。しかし、ファイル復元ソフトを活用することにより、高い確率でデー

                        HDDを完全消去して安全にパソコンを廃棄する方法
                      • 世紀の謎「カーリングはなぜ曲がるか」を精密観測で解明 | 立教大学

                        OBJECTIVE. 立教大学(東京都豊島区、総長:西原廉太)の村田次郎理学部教授は、カーリング競技で用いられるカーリング石が「反時計回りに回転させると、進行方向に向かって左側に曲がっていくのはなぜか」という、98年間にわたって科学者の間で真っ向から対立する仮説に基づく議論が繰り広げられてきた「世紀の謎」を、精密な画像解析によって実験的に解決することに初めて成功しました。 私たちの4次元時空を超える5次元以上の「余剰次元」の探索実験の為に開発した画像処理型変位計測技術を応用する事で、ミクロン精度でカーリング石の運動を精密観測した結果、中心からずれた点での摩擦支点を中心に石の重心が振られる、旋廻現象によって偏向が起きる事、そして速さが遅いほど摩擦が強まるという、通常は一定と考える動摩擦係数が実際には速度依存性を持つ性質により、氷に対する速さが異なる左側と右側とで、非対称な頻度で旋廻が生じると

                          世紀の謎「カーリングはなぜ曲がるか」を精密観測で解明 | 立教大学
                        • 時間速く進むスカイツリー展望台 10億分の4秒、相対性理論実証 | 共同通信

                          高さ450メートルの東京スカイツリー展望台の時間は地上よりも1日に10億分の4秒速く進んでいることを、超精密時計「光格子時計」の観測で確かめたとする論文を、香取秀俊東京大教授らが6日付ネイチャーフォトニクス電子版で発表した。 重力が大きいと時間の進み方はゆっくりになるという、アインシュタインの一般相対性理論を実証する内容。センチ単位の高さの変化を測って、地震や噴火に伴う地面のわずかな動きを監視する応用が期待されている。香取氏は今回の成功を受けて「実用化にめどが立った」と述べた。 光格子時計の誤差は160億年に1秒。「ノーベル賞に近づいた」との評価も。

                            時間速く進むスカイツリー展望台 10億分の4秒、相対性理論実証 | 共同通信
                          • 尺八が理不尽にディスられていて開いた口が塞がらない

                            楽器の方でなんとかしてくれよ https://anond.hatelabo.jp/20220220153320 このエントリ、本編は興味深く読んでいたのに最後のおまけで唐突に尺八がディスられていて唖然としてしまいました。 ちなみに私は小中高と吹奏楽部で金管楽器を担当しており、ホルンの音色の魅力や特有の難しさも理解しているつもりです。 そして大学卒業後は尺八に興味を持ち、各流派を学んでおります。 元増田が尺八という楽器の現状を知らずにディスっているのは明白で、あまりに理不尽です。 世界的に無名な日本の民族楽器なんて、誰も難易度とか問題にしません オーケストラ曲や吹奏楽曲に尺八が用いられている曲は複数存在します。 一番有名なのは武満徹作曲の「ノヴェンバーステップス」でしょう。初演は小澤征爾指揮のニューヨークフィル。それでも「無名な日本の民族楽器」でしょうか? 1994年から4年に1回「世界尺八

                              尺八が理不尽にディスられていて開いた口が塞がらない
                            • 長年の悩みだったギターアンプのノイズが「マイ電柱」で直った件 - give IT a try

                              はじめに 僕は趣味でよくギター(エレキギター)を弾きます。 ですが、長年ずっと困っていたことがありました。 それはギターアンプのノイズです。 多かれ少なかれ、エレキギターを弾くときはアンプからノイズが出るものです。 しかし、僕の家のギターアンプからは明らかに異常な「キーン」というノイズが出ます。 実際どんな音なのかは以下の動画で確認できます。(うるさいのでボリュームには気を付けて!) www.youtube.com このノイズは以下のような特徴があります。 5〜6年前から急に発生し始めた 常時ノイズが出るわけではなく、たまに発生する ノイズが鳴り始めると鳴ったり止んだりを繰り返す ギターを変えても、アンプを変えても同じようにノイズが出る(なので、ギターやアンプの問題とは考えにくい) ギターを全くつないでいない状態でもノイズが出る(なので、ギターのピックアップがノイズを拾っているわけではない

                                長年の悩みだったギターアンプのノイズが「マイ電柱」で直った件 - give IT a try
                              • エントロピーとは何か

                                「エントロピー」という概念がよくわかりません。 - Mond https://mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy https://b.hatena.ne.jp/entry/s/mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy 「エントロピー」は名前自体は比較的よく知られているものの、「何を意味しているのか今一つ分からない」という人の多い概念である。その理由の一つは、きちんと理解するためには一定レベルの数学的概念(特に、微積分と対数)の理解が必要とされるからであろう。これらを避けて説明しようとしても、「結局何を言いたいのかすっきりしない」という印象になってしまいやすい。 「エントロピー」を理解し難いものにしているもう一つの理由は、「エントロピー」という概念が生まれた歴史的経緯

                                  エントロピーとは何か
                                • 古典プログラマ向け量子プログラミング入門 [フル版]

                                  サブタイトル:ショアのアルゴリズムから巡回セールスマン問題まで プログラマ向けに量子プログラミングの解説をした資料です。できるだけソースコード付きにすることで独習可能な内容になっています。また必要となる数学の知識に関しても解説しています。よろしければご活用ください!

                                    古典プログラマ向け量子プログラミング入門 [フル版]
                                  • 物理学的に仕事量ゼロなのに、なぜ人は重いものを持ち続けると疲れるのか

                                    人が重いものを持って、その高さを維持し続けるとき、物理学的には仕事をしていないはずなのに、なぜ人は疲れるのか。

                                      物理学的に仕事量ゼロなのに、なぜ人は重いものを持ち続けると疲れるのか
                                    • “最強生物”クマムシ、量子ビットと量子もつれになる 絶対零度・高真空に420時間さらされても生還

                                      宇宙空間などの極限環境でも生存できるといわれる微生物「クマムシ」と超電導量子ビットの間に、量子特有の現象である「量子もつれ」を観察した──こんな研究結果を、シンガポールなどの研究チームが論文投稿サイト「arXiv」で12月16日に公開した。量子もつれ状態を作るためにほぼ絶対零度まで冷やされたクマムシは、その後生命活動を再開したという。 量子もつれは複数の量子による特有の相関で、量子コンピュータの計算アルゴリズムにも重要な役割を果たす。量子的な現象は小さく冷たい物体でなければ観察が難しいことから、生物のような大きく複雑で熱い物体に、量子の性質は現れにくい。研究チームは、量子力学の立役者の一人であるニールス・ボーアが遺した「生物で量子実験を行うのは不可能」という主張に注目し、普通の生物では耐えられない環境でも生き続けるクマムシに白羽の矢を立てた。 研究チームはまず、クマムシを「クリプトビオシス

                                        “最強生物”クマムシ、量子ビットと量子もつれになる 絶対零度・高真空に420時間さらされても生還
                                      • ホヤには「大人スイッチ」があると判明! 刺激されると成体になっちゃう - ナゾロジー

                                        ホヤには押すと大人になる「大人スイッチ」があるようです。 2月17日に『Proceedings of the Royal Society B』に掲載された論文によれば、ホヤの幼生の「鼻先」に、一定時間以上の物理的な刺激を与えることで、大人にできるとのこと。 地球上にはさまざまな変態をおこなう生物が存在しますが、物理的刺激がトリガーとなる例は珍しいといえます。 しかし、いったいどうして機械的な刺激が、ホヤを大人にするのでしょうか?

                                          ホヤには「大人スイッチ」があると判明! 刺激されると成体になっちゃう - ナゾロジー
                                        • 幾何学折り紙のパイオニアである藤本修三氏の自費出版折り紙教本5冊がパブリックドメインに

                                          by origami_madness 幾何学的なパターンの折り紙を数多く発明し、折り紙愛好家の中では世界的知名度を誇る藤本修三氏が自費出版した5冊の折り紙教本が、藤本氏の子どもの同意を得てパブリックドメインで公開されました。 Fujimoto’s Five Books are now Public Domain - Origami by Michał Kosmulski https://origami.kosmulski.org/blog/2022-10-23-fujimoto-books-public-domain 藤本氏は1922年に大阪で生まれ、化学・製薬会社勤務を経て兵庫県の高校で化学教師となった人物です。最初は「1枚の紙で正三角形を作るにはどうすればよいか」という問題から出発し、折り紙への関心が増すにつれて正五角形、正四面体、正二十面体と次々に複雑な立体を作るようになり、やがて化

                                            幾何学折り紙のパイオニアである藤本修三氏の自費出版折り紙教本5冊がパブリックドメインに
                                          • NASA公開の“天体投入ゲーム”が混沌。ブラウザで遊べる、天体物理学に基づく星系づくり - AUTOMATON

                                            NASAの運営するAstronomy Picture of the Day(APOD)は6月19日、ブラウザゲーム『Super Planet Clash』をサイト上で公開した。 『Super Planet Clash』は、惑星系に天体を投入していくゲームだ。投入された天体は公転を始めるが、その軌道はほかの天体の引力による影響を受ける。そのため、考えなしに天体を投入していくとそれぞれの軌道が狂ってしまう。そして、天体同士が衝突する、またはひとつでも天体が軌道から離脱すると、ゲームオーバーとなる。プレイヤーは天体の軌道をなるべく維持しつつ、1000年続く星系を作ることを目指す。 天体は、星系内の任意の位置をクリックして投入可能。投入できる天体のサイズはEarthと、Ice giant/Giant planet/Brown dwarf/Dwarf starの計5種類。それぞれEarthと比べて1

                                              NASA公開の“天体投入ゲーム”が混沌。ブラウザで遊べる、天体物理学に基づく星系づくり - AUTOMATON
                                            • 「whndows. com」ドメインを取得して「windows. com」へのトラフィックを盗み見る手法

                                                「whndows. com」ドメインを取得して「windows. com」へのトラフィックを盗み見る手法
                                              • 【映画】バブル 感想 ハードSF文法で解釈された人魚姫(ネタバレ有)

                                                匿名で質問やメッセージを送れます。 返信はTwitterのつぶやきになります。 ブログに書いて欲しい事のリクエストなどもゆる募。 homlaの質問箱です | マシュマロ

                                                  【映画】バブル 感想 ハードSF文法で解釈された人魚姫(ネタバレ有)
                                                • 『ゼルダの伝説 ティアキン』自由な“掛け算の遊び”を生むために。「全部物理で作る」を決断するまで【GDC 2024】 | ゲーム・エンタメ最新情報のファミ通.com

                                                  “Tunes of the Kingdom: Evolving Physics and Sounds for ‘The Legend of Zelda: Tears of the Kingdom’”――“チューンズ オブ キングダム:『ゼルダの伝説 ティアーズ オブ ザ キングダム』の進化する物理学とサウンド”と題された本講演では、本作の世界がいかに生み出されたか、物理設定とサウンド設計の面から語られた。 本記事では、とくに講演前半について紹介。後半のサウンド設計については下記関連記事をご覧いただきたい。

                                                    『ゼルダの伝説 ティアキン』自由な“掛け算の遊び”を生むために。「全部物理で作る」を決断するまで【GDC 2024】 | ゲーム・エンタメ最新情報のファミ通.com
                                                  • データに質量はありますか?たとえば全く使用していないコンピュータを2台用意して、片方のコンピュータはデータが空の状態、もう片方はデータがフルの状態で2台の重量を計った場合、ほんのわずかでも重量に差が出るようなことはありませんか? | mond

                                                    mondでこの質問への回答を読んでみましょう

                                                      データに質量はありますか?たとえば全く使用していないコンピュータを2台用意して、片方のコンピュータはデータが空の状態、もう片方はデータがフルの状態で2台の重量を計った場合、ほんのわずかでも重量に差が出るようなことはありませんか? | mond
                                                    • 高校生がゼネコン社長に手紙を書いたら…役員にすぐ共有、思わぬ返事

                                                      あきらめなかった研究 みんな心を動かされた 基礎研究こそ大きな力 「私は中学3年から今まで、金属球の転がり摩擦という基礎物理分野の実験を続けております」。大手ゼネコンの竹中工務店の社長あてに手紙を書いた高校生がいます。全国の高校生・高専生による科学技術のコンテストで竹中工務店賞を受賞し、お礼を伝えるためでした。書いた手紙がもたらした思わぬ展開を取材しました。 あきらめなかった研究 手紙を書いたのは、東京都町田市の玉川学園高等部3年の浅倉ゆいさん(17)。浅倉さんは昨年12月にあった第18回高校生・高専生科学技術チャレンジ「JSEC2020」(朝日新聞社、テレビ朝日主催)で、竹中工務店賞を受賞しました。 テーマは「レールの上を転がる球の摩擦力の研究」です。物理の教科書には摩擦係数は速度に依存しないとあるのに、実際に球を転がして計測すると速度で摩擦係数が変化してしまうのはなぜか。その原因を探ろ

                                                        高校生がゼネコン社長に手紙を書いたら…役員にすぐ共有、思わぬ返事
                                                      • 物理と数学の履修時期は常に1年すれ違っている

                                                        物理学は常に数学の発展と共に進歩してきた。 というより物理学からの必要に駆られた要請によって新たな数学の概念が切り開かれてきた。 したがって当然、物理を学ぶ際には現象そのものの理解とその裏に潜む数学的内容の理解が両輪となるのだが、 なぜだか日本の学校教育においては、この前提が上手く機能していない。 物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要な概念が登場するといった具合だ。 具体的には、以下のようなものがある。 小学校6年の理科で「てこ」の法則性を学ぶ。この背景にあるはずの「反比例」の関係は中学1年の数学で習う。中学校3年の理科で力の分解を学ぶ。この背景にあるはずの「三角比」は高校1年の数学Ⅰで習う。中学校3年の理科で運動エネルギーを学ぶ。この背景にあるはずの「二次関数」は高校1年の数学Ⅰで習う。高校1年の物理基礎で等加速度運動を学ぶ。この背景にあるはずの「多項

                                                          物理と数学の履修時期は常に1年すれ違っている
                                                        • 「オーディオ版レイトレーシング」と「物理シミュレーションによる音響空間表現」|Prismaton

                                                          「レイトレーシング」は 3D グラフィックスの重要な技術となっていて、レイトレーシングを使ったリアリティの高いグラフィックス表現を見る機会が増えてきました。 また同時に、「レイトレーシングをオーディオに応用する」といった言及もちょいちょい見かけるようになりました。 しかし、グラフィックスのシミュレーションにレイトレーシングが有効なのは光の特性をレイトレーシングで近似できているからであり、音の特性に関してはレイトレーシングだけで近似するのは困難です。これはもう少し広く知られていて欲しい事実なのですが、何故かあまりきちんと知られていません……。 そもそも悲しいことに、「物理シミュレーションによる音響空間表現(方角、残響、遮蔽などの表現)」を網羅的に真面目に考察した資料は恐ろしく少ないです。この現状では、レイトレーシングだけで音響空間表現が簡単に出来るというような誤解が生まれてしまうのも仕方ない

                                                            「オーディオ版レイトレーシング」と「物理シミュレーションによる音響空間表現」|Prismaton
                                                          • ぶどうをレンジでチンするとこの世の終わりのようなプラズマが発火する理由がやっと判明

                                                            ぶどうをレンジでチンするとこの世の終わりのようなプラズマが発火する理由がやっと判明2022.11.23 20:35510,990 Ryan F. Mandelbaum - Gizmodo US [原文] ( satomi ) 2019年2月26日の記事を編集して再掲載しています。 偶然の一致。 電子レンジに絶対入れてはいけないものと言えば、たまごとぶどう。たまごは爆発しますし、ぶどうはテスラコイルみたいな厳かな光を発し、「こ、これは…」と呆然としているとボッと燃えたりします。畑のぶどうなのに。 この奇妙な現象にまじめに取り組む論文が月曜、カナダから高名な科学誌に発表され、たいへん注目を呼んでいます。序文にはこうあり… ぶどうの球体2個を電子レンジにかけるとプラズマが発光する現象は今や全人類の知るところとなっている。 これで終わりにしてやるぜ、という本気度がうかがえます。さっそく研究班に取材

                                                              ぶどうをレンジでチンするとこの世の終わりのようなプラズマが発火する理由がやっと判明
                                                            • 今インスタで人気の『油と混ぜると石鹸水になって排水口に流せる商品』は油をただ流してるのと同じ「これは下水道屋泣かせや」

                                                              芋( ・ω・ ) @imo24da 今インスタで人気の「油と混ぜると石鹸水になって排水口に流せる」っていう #ニューさらさら 混ぜた時は本当に石鹸水になったように見えるけど、時間が経つと水と油に分離してしまいます😭 油を流してるのと同じです😭 使用しないでください😭 国民生活センターの実際の実験→kokusen.go.jp/pdf/n-20040421… pic.twitter.com/58k5nmBfcz 2019-09-11 12:24:20

                                                                今インスタで人気の『油と混ぜると石鹸水になって排水口に流せる商品』は油をただ流してるのと同じ「これは下水道屋泣かせや」
                                                              • 文学部生のための数学・物理学のブックリスト(Book List) - Kohei Morita

                                                                このリストは文系の人が数学や物理学を勉強するための本の案内です.あくまで,個人的に勉強になったものを並べているだけで,もちろん網羅的ではありません.やたらと並んでいることからわかるように,いろんな本を読んでは挫折して,凹んだりしていました.優秀ならこんなにいっぱい挙げなくていいのだろうと思います.ここから下は,挫折と失敗の個人的な記録です. 更新履歴2019/12/07 後悔と公開2019/12/17 物理学の項目に最低限必要だと思われる数学の内容を加筆・Susskindのことを忘れていたので,古典力学の項目を作りそこに加筆.2019/12/19 注意に加筆.あと,発表したWSのリンク足した.タイポの修正(随時なのでもう書かない)2020/7/12 「ヨビノリ」をお勧めに追加. 注意哲学の本がそうであるように,数学・物理学の本にも読み方はあります.読み方の違いは決して小さくないと思います.

                                                                • お湯が冷水よりも早く凍る「ムペンバ効果」は本当なのか?物理学が答えを出せない理由 - ナゾロジー

                                                                  お湯は冷たい水よりも先に凍ります。 この直感に反した不思議な現象について、最初に言及したのは2300年前のアリストテレスと言われています。 彼は著書において「お湯を早く冷ますには、まず日なたに置くべきである」と記しています。 しかしアリストテレスは「ウナギは泥から発生する」など現代ではとても科学的とは言えない記述も残しており、「お湯を冷ます前にまず温めろ」との言葉も、賢者の世迷言として長い間、忘れられてきました。 しかし1963年にタンザニアに住む13歳の少年、ムペンバ君は、熱い水のほうが冷たい水よりも早く凍ることを発見し、学校で研究成果を発表しました。 これははじめは学校中の生徒と先生に笑われましたが、物理学者が実際にムペンバ君の主張が正しいことを確認すると流れは一転。 熱いもののほうが冷たいものより早く凍るこの現象は「ムペンバ効果」と名付けられ、様々な研究が行われて来ました。 しかし、

                                                                    お湯が冷水よりも早く凍る「ムペンバ効果」は本当なのか?物理学が答えを出せない理由 - ナゾロジー
                                                                  • 宇宙に始まりはなく過去が無限に存在する可能性が示される - ナゾロジー

                                                                    物理学が未だに説明できていない問題現在、物理学にはまったく異なる2つの理論が存在し、どちらも大きな成功を収めています。 その2つの理論とは、量子力学と一般相対性理論です。 量子力学は、自然界を支配する4つの基本的な力のうち、3つの力(電磁気力、弱い力、強い力)を微小な世界で記述することに成功しました。 ただ、重力についてはまだうまく説明することができていません。 一方、一般相対性理論は、これまで考案された中でもっとも強力で完全な重力の記述方法です。 しかし、一般相対性理論にも不完全な部分があり、この世界で2つのポイントについてだけ理論が破綻しています。 それが「ブラックホールの中心」と「宇宙の始まり」です。 ここについては、一般相対性理論でも計算が破綻してしまい、信頼できる結果を得ることができません。 そのため、これらの領域は「特異点」と呼ばれていて、現状の物理理論が及ばない時空のスポット

                                                                      宇宙に始まりはなく過去が無限に存在する可能性が示される - ナゾロジー
                                                                    • 「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】

                                                                      このスライドでは, ・フーリエ級数 ・複素フーリエ級数 ・フーリエ変換(連続) ・離散フーリエ変換(DFT) ・高速フーリエ変換(FFT) を解説しています. ブログはこちら 【フーリエ解析05】高速フーリエ変換(FFT)とは?内側のアルゴリズムを解説!【解説動画付き】 https://kenyu-life.com/2019/07/08/what_is_fft/ Twitter → https://twitter.com/kenyu0501_?lang=ja Youtube → https://youtu.be/zWkQX58nXiw

                                                                        「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】
                                                                      • 京大おもろトーク番外編「おもちゃモデル」講演:時枝 正(スタンフォード大学 教授)2018年2月8日

                                                                        京大おもろトーク番外編 「おもちゃモデル」 https://ocw.kyoto-u.ac.jp/course/344/講演「おもちゃモデル」時枝 正(スタンフォード大学 教授)2018年2月8日 京都大学理学部6号館チャプター00:00 | 鳴る茶碗07:44 | 杉玉の集団ぐるぐる巡り12:28 | 転がる...

                                                                        • 「100個の星が突然消えた」ことが判明、地球外生命体の証拠となる可能性も

                                                                          by WikiImages 20世紀の古い天体観測データと21世紀の新しい天体観測データを比較する研究により、わずか数十年間で100個もの星が不可解に消失していることが判明しました。自然現象による消失や誤観測の可能性もあるものの、研究者は「地球外知的生命体による何らかの活動の痕跡」という可能性も排除していないそうです。 The Vanishing and Appearing Sources during a Century of Observations Project. I. USNO Objects Missing in Modern Sky Surveys and Follow-up Observations of a "Missing Star" - IOPscience https://iopscience.iop.org/article/10.3847/1538-3881/ab

                                                                            「100個の星が突然消えた」ことが判明、地球外生命体の証拠となる可能性も
                                                                          • 『アジアの科学者100人』に選ばれた広島大で助教を務める片山春菜さん(26)の研究と経歴が異次元レベル

                                                                            朝日新聞デジタル @asahicom 広島大の26歳「アジアの科学者100人」に ブラックホール研究で asahi.com/articles/ASR9C… シンガポールの科学誌が発表した今年の「アジアの科学者100人」に、広島大学大学院で助教を務める片山春菜さん(26)が選ばれました。 広島大に在籍する研究者の受賞は初めてといいます。 2023-09-12 09:16:25 🍄キノコ老師🍄 @SMBKRHYT_kinoko 広島大の26歳「アジアの科学者100人」に ブラックホール研究で:朝日新聞デジタル asahi.com/articles/ASR9C… 博士号取得して即助教になっているあたりに優秀さを感じる。あと、大学院を3年で修了していない?? twitter.com/i/web/status/1… 2023-09-12 12:15:12 🍄キノコ老師🍄 @SMBKRHYT_

                                                                              『アジアの科学者100人』に選ばれた広島大で助教を務める片山春菜さん(26)の研究と経歴が異次元レベル
                                                                            • 「重力はどうして最弱なのか?」「重いものと軽いものが同時に落ちる?」重力の性質は謎ばかり - ナゾロジー

                                                                              本当にすべての物体が引き合っているの?アイザック・ニュートン(ゴドフリー・ネラー画)。 / Credit:Wikipediaりんごが木から落ちるのを見るまでもなく、地球上のあらゆる物体は地面に向かって引っ張られています。 それはずっと古代から人々の疑問でした。 アリストテレスは「万物には本来あるべき場所へ戻ろうとする力が働くのだ」と考えました。 彼は鳥が巣へ戻るのも、地面から持ち上げた物が地面に戻っていくのも、同じ原理によるものだと考えたのです。 しかし、太陽や月をはじめとする天体は、空を移動し続けていてあるべき場所があるようには見えません。 物体を地面に引き寄せる力とはなんなのか? それはずっと長い間人類にとっての謎だったのです。 この問題に大きな転機を与えたのが、17世紀の偉大なる科学者アイザック・ニュートンです。 ニュートンは物体に働く「力」というものを明確に定義することで、力の作用

                                                                                「重力はどうして最弱なのか?」「重いものと軽いものが同時に落ちる?」重力の性質は謎ばかり - ナゾロジー
                                                                              • 磁石って分子レベルに切っても 磁石なんですか? | mond

                                                                                抜群によい質問です。簡潔でかつ奥が深い。身近な現象と量子論の深いメカニズムをつなげる本質的な問いです。何が言いたいかというと、難しくて私にはちゃんと説明できません。どうしましょう。でもこれでは答えになっていませんね。少し考えてみましょう。 棒磁石を2つに折って分けるととアラ不思議、折ったところにN極とS極が勝手に現れて、2つの磁石ができあがる。だったらもっと折ってみたらどうだろう。4つ、8つ、...。どこまで小さく折っても磁石のままなんだろうか。もっともな疑問ですよね。分子レベルになったらどうだろう。それは場合によるでしょう。でも確実に言えるのは、もっと分解して原子核と電子に分けてみたときです。そう。1つの電子は磁石なのです。 電子は自転しています(スピンといいます)。電荷をもつものが回転すると磁石になります。電子は小さな素粒子ですが、一つの立派な磁石です。 問題は、原子や分子など、大きく

                                                                                  磁石って分子レベルに切っても 磁石なんですか? | mond
                                                                                • 色々試して行き着いた読書方法

                                                                                  社内のSlackや打ち合わせで、今年に入ってから「どうやって本を読んでいるんですか?」と聞かれる回数が複数ありました。これを機にブログポストにまとめておこうと思います。これまでに色々な読書方法+メモを試してきましたが、2022年時点で行き着いた方法という感じです。 前提 電子書籍(私の場合はKindle1)が販売されている書籍の場合は、電子書籍で購入します。電子書籍が販売されていない場合は、物理書籍を購入します。 電子書籍を優先する理由は次の2つです。 あとでまとめるときに楽なため スマートフォンがあればどこでも読めるため 特に1つ目の「あとからまとめるときの楽さ」を重視しています。(理由は後述) 読み進め方 電子書籍と物理書籍で読み方が多少異なります。そこで、電子書籍と物理書籍とで共通する部分を最初に示して差分を説明します。 電子書籍、物理書籍共通 高速で読み流し どちらのタイプの書籍で

                                                                                    色々試して行き着いた読書方法