タグ

研究に関するaz99のブックマーク (5)

  • 褒美よりも遊びたい? ネズミはかくれんぼ好き、独研究

    かくれんぼをするネズミ。コンスタンティン・ハルトマン氏ら提供(撮影日不明)。(c) HO / Reinhold, Sanguinetti-Scheck, Hartmann & Brecht / AFP 【9月13日 AFP】ネズミが隠れ場所を探してこっそりと移動している時は、かくれんぼで遊びたいだけなのかもしれないと推定した研究が12日、米科学誌サイエンス(Science)に発表された。 【おすすめ記事】道端に「ネズミ御用達」のミニチュア店舗出現、人気スポットに スウェーデン 独フンボルト大学(Humboldt University)の神経科学者チームが箱だらけの小さな部屋の中でネズミたちと数週間過ごした結果、驚くべきことにネズミがかくれんぼの名人であることが分かった。 褒美として餌を与えなかったにもかかわらず、ネズミは隠れまわる人間を見つけたり、人間に見つけられたりすることを純粋に楽しん

    褒美よりも遊びたい? ネズミはかくれんぼ好き、独研究
  • 世界で初めて「性を失った」シロアリを発見 -シロアリの常識を覆すメスだけの社会- — 京都大学

    矢代敏久 農学研究科特定研究員(現・シドニー大学研究員)、松浦健二 同教授、小林和也 フィールド科学教育研究センター講師らの研究グループは、来はオスとメスが共同で社会生活を営んでいるシロアリにおいて、メスしか存在せず、単為生殖だけで繁殖しているシロアリを世界で初めて発見しました。 研究成果は、2018年9月25日に、英国の科学誌「BMC Biology」のオンライン版に掲載されました。 アリとシロアリの社会の違いは何かと聞かれた時に、まずお答えするポイントは、アリはメス社会、シロアリは両性社会を営んでいるということです。アリの社会は女王とメスのみのワーカーで構成されている(オスは交尾すると死んでしまう)のに対し、シロアリの社会には王と女王、そしてオスとメスのワーカーや兵アリがいます。 しかし、この大前提はもはや適当ではなくなりました。なぜなら、シロアリであるにもかかわらず、メスしかいな

    世界で初めて「性を失った」シロアリを発見 -シロアリの常識を覆すメスだけの社会- — 京都大学
  • 論文紹介:食品に添加されたトレハロースがクロストリジウムの流行の原因だった(西川伸一) - 個人 - Yahoo!ニュース

    来週発売のNatureに、ちょっと恐ろしい論文が掲載される。普通に品に添加されているトレハロースが、難治性の腸炎の原因クロストリジウム・ディフィシル(CD)の流行の原因になっているという研究だ。実験の詳しい内容は私自身のブログを参照してもらうことにして、重要なメッセージだけを紹介しておく。米国テキサスのベーラー大学からの論文で、CDが勃発した臨床現場では極めて重要な情報だと思う(Collins et al, Dietary trehalose enhances virulence of epidemic clostridium difficile(流行性のクロストリディウム・ディフィシル強毒株の毒性は事の中のトレハロースにより増強される)Nature,2018 in press:doi:10.1038/nature25178) トレハロースグルコースが2個結合したトレハロースは、温度や

    論文紹介:食品に添加されたトレハロースがクロストリジウムの流行の原因だった(西川伸一) - 個人 - Yahoo!ニュース
  • 八丈小島のマレー糸状虫症 - Wikipedia

    鳥打地区の遺構(2017年〈平成25年〉11月撮影) 鳥打地区の遺構(2017年11月撮影) このように象皮病の症状の有無を問わず、鳥打村住民の血中ミクロフィラリア陽性率は4割以上の高率であり、「ミクロフィラリアは見いだせなかった」とする前年の吉永・帖佐の調査結果と大きく異なっている。なお、見出したミクロフィラリア虫の種類については特に述べておらず、日国内の他のフィラリア流行地と同様にバンクロフト糸状虫と見なしたものと考えられている[82]。望月と井上はこの結果から、象皮病の発生にはフィラリア糸状虫の関与が必要であることを主張し、連鎖球菌を主因とした京大側の結論に異論を唱えた[81]。ただし、フィラリア虫の寄生によってリンパ系の滞が起こることが象皮病の主要因ではあるものの、滞した部分が細菌に感染しやすくなるのも事実であって、細菌感染による丹毒様発作はあり得るとし、感染過程のある時点で

    八丈小島のマレー糸状虫症 - Wikipedia
  • 名大、カブトムシの角が短時間で出現する仕組みを解明

    名古屋大学は、同大大学院生命農学研究の後藤寛貴特任助教らの研究グループが、巨大なカブトムシの角が、幼虫から蛹(サナギ)になる際に短時間で現れる理由に関して、カブトムシは角を「小さく折り畳んだ状態」で形成しておき、脱皮時にそれを「一気に展開」するという二段階のステップにより角を作っていることを実験的に示したことを発表した。この成果は10月24日、英国のオンライン国際専門誌「Scientific Reports」に掲載された。 カブトムシの幼虫の頭の中には、角の前駆体である「角原基」が存在しており、それは複雑に折りたたまれた袋状構造となっている。後藤特任助教らは、その複雑な袋状構造をコンピューターに再構築し、それを計算により膨らませるだけで、完全な蛹の形態が出現することを証明した。しかし、「膨らませた時に見事な三次元形になるしわしわ構造を折りたたんだ状態で作る」というプロセスが、どのように行わ

    名大、カブトムシの角が短時間で出現する仕組みを解明
  • 1