タグ

algorithmに関するRion778のブックマーク (11)

  • フロイドの循環検出法 - Wikipedia

    フロイドの循環検出法(英: Floyd's cycle-finding algorithm)とは、任意の数列に出現する循環を検出するアルゴリズムである。任意の数列とは、例えば擬似乱数列などであるが、単方向連結リストとみなせる構造のようなもののループ検出にも適用できる。ロバート・フロイドが1967年に発明した[1]。「速く動く」と「遅く動く」という2種類のインデックス(ポインタ)を使うことから、ウサギとカメのアルゴリズムといった愛称もある。 グラフの最短経路問題を解くワーシャル–フロイド法とは(同じ発案者に由来するので同じ名前がある、という点以外は)無関係である。 アルゴリズム[編集] 単方向連結リストのループ検出なども典型的なのであるが、形式的(フォーマル)な説明には数列のほうが向いているのでここでは擬似乱数列生成器の例で説明する。ポラード・ロー素因数分解法などで擬似乱数列生成器の分析が重

    フロイドの循環検出法 - Wikipedia
  • ダメ出し:アトキンの篩 - 裏 RjpWiki

    Julia ときどき R, Python によるコンピュータプログラム,コンピュータ・サイエンス,統計学 2011-05-11 R でエラトステネスの篩 の後半に,アトキンの篩のプログラムが掲載されている。 ご人も「多分条件判定減らすとかしてRに合った実装しないとダメなんだと思う」というとおり,ベクトル化をはかる。ちなみに,元のプログラムでは for を避けるためか while で書いているがこれはほとんど意味がない。 limit = 10000000 で 23 秒かかっていたものが,書き直すと 0.4 秒ほどで計算終了ということになった。 プログラムは以下の通り。 atkin <- function(limit = 1e+06, return = FALSE) { sqrt.limit <- sqrt(limit) isprime <- logical(limit) for (z in

    ダメ出し:アトキンの篩 - 裏 RjpWiki
    Rion778
    Rion778 2012/02/13
    昔のこと過ぎて何でwhile使ったか既に思い出せないなー。何かfor避けたい理由があったかな。また暇があったらやってみよう。
  • 素数判定 - あどけない話

    要約:素数判定に使われるミラーラビン法を解説しながら、Haskell で実装してみる。 フェルマーテスト 大きな数を確実に素数だと判定するには、大変時間がかかるので、実用的には「ほぼ素数だ」と確率的に判定する。確率的な素数判定の代表格がフェルマーテストである。 フェルマーテストには、以下に示すフェルマーの小定理を利用する。 a^p ≡ a (mod p) a は任意の整数。p は素数である。法 p の下で a を p 乗したものは、a と合同であると言う意味だ。a には制限はないが、特に a を p より小さい整数、0 ≦ a ≦ p - 1 とすれば、a を p 乗して、p で割ると a に戻るとも解釈できる。 最初に見たときは、だからどうしたと思われるかもしれない。しかし、有名なフェルマーの大定理が実用上何の役にも立たないのに対し、フェルマーの小定理はいろんな場面で活躍する。 実際に計

    素数判定 - あどけない話
  • Katz's Site - 算譜入門: オートマトンの基礎

    以上のような図や表によって象徴される、 状態とその間の遷移が定義された構造を 「状態機械」 と呼ぶ。 各々の状態の意味は考えない。 全く考えないのかといえばそうでもないのだが、 少なくとも理論上は状態として何を持ってきても構わない。 健康状態のように明らかな意味を持つモノを状態とする事もある。 何が何だかさっぱりわからないモノを状態とする事もある。 スゴロクの桝目のようなモノは後者の例と言えよう。 問題を解く為に最も便利なモノを状態として定義すればよい。 少し変わった状態機械の使用例: 虎と羊を連れた人が野菜を運んでいた。 ある所で川を渡る必要が生じた。 舟が一艘あったがとても小さい。 その人が乗るとあとは虎か羊か野菜の内のいずれか一つしか乗せられない。 しかし人が居ない所で虎と羊を一緒にすると虎は羊をべてしまう。 同様に人が居ないと羊は野菜をべてしま

  • RDBMSで使われるB木を学ぼう (1/3)- @IT

    第5回 RDBMSで使われるB木を学ぼう はやしつとむ アナハイムテクノロジー株式会社 2009/6/22 オブジェクト指向によって、アルゴリズムは隠ぺいされていることが多くなった。しかし、「用意されていない処理」が求められたときに対応できるだろうか(編集部) 第3回「AVL木で木構造を学ぼう」、第4回「もっとAVL木で木構造を学ぼう」と2回連続でAVL木について解説しました。 今回はAの後だからBというわけではありませんが、B木(B-Tree)を取り上げます。 B木の変種であるB+木やB*木は、OracleやPostgreSQL、Firebirdなどのリレーショナルデータベースでインデックスとして利用されている、メジャーな木構造です。 筆者はDelphi 2009でサンプルプログラムを作成していますが、Delphiをお持ちでない方は下記のURLからTurboDelphiをダウンロードして

  • Evaluation of Powers

    This is a very interesting problem with a lots of history. Anyways we will not wonder into it. We shall see how fast can we calculate xn, given x and n where n is a positive integer. The brute force method would be to run a loop from 2 to n and calculate in n-1 steps. We will discuss three methods to do it quickly. Binary Method This the most common method used in programs today. It is also called

    Evaluation of Powers
  • Integer Powers of a Number

  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • 直線のアルゴリズム 円のアルゴリズム

    これも色々あるのですが多いのは 1)線分の始点終点で出来る長方形が交わるか? 2)線分が収まる円を描いて円同士が交わるか? 3)片方の端点から線分との距離2組みを求めて短い方 の3つくらいかな? 1)は判断を並べれば良いだけ しかし、分岐が入るとCPUは遅いので、 アセンブラレベルで大小比較結果(CF)を集めてまとめて比較するような工夫が必要です。 2)円同士が交わるかは、中心同士の距離を求めて双方の円の半径の 和(線分の長さ合計/2)との大小比較します。 hypotenuse を荒く、誤差分を安全側に判定れば(分岐予測のミスでペナルティを払うCPUでは) 1)より高速です。 3)は線分の交差判定の初段と実は同じ計算をします。 これ使うなら素直に交差判定した方がマシ GUIの為に、必要な処理です。 マウス座標をp0 線分が点p1,p2を通るとして rx:=p1.x-p0.x , ry:=p

  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター:最強最速アルゴリズマー養成講座(1/4 ページ) プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 まだまだ活用可能な探索 前回の「知れば天国、知らねば地獄――『探索』虎の巻」で、「探索」という概念の基礎について紹介しました。すでに探索についてよく理解している方には物足りなかったかと思いますが、「問題をグラフとしてうまく表現し、そのグラフを効率よく探索する」というアルゴリズマー的な思考法がまだ身についていなかった方には、得るものもあったのではないでしょうか。 前回は、「幅優先探索」と「深さ優先探索」という、比較的単純なものを紹介しましたが

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター
  • 1