タグ

アルゴリズムに関するenmtkntのブックマーク (11)

  • 計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。今回は計算量オーダーの求め方について書きます。 0. はじめに 世の中の様々なシステムやソフトウェアはアルゴリズムによって支えられています。Qiita Contribution ランキング作成のために用いるソートアルゴリズムのような単純なものから、カーナビに使われている Dijkstra 法、流行中のディープラーニングに用いられている確率的勾配降下法など、様々な場面でアルゴリズムが活躍しています。アルゴリズムとはどんなものかについて具体的に知りたい方には以下の記事が参考になると思います: アルゴリズムとは何か ~ 文系理系問わず楽しめる精選 6 問 ~ アルゴリズムを学ぶと $O(n^2)$ や $O(n\log{n})$ や $O(2^n)$ といった計算量オーダーの概念が登場します。こうした記法を見ると

    計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita
  • リレーショナルデータベースの仕組み (1/3) | POSTD

    リレーショナルデータベースが話題に挙がるとき、私は何かが足りないと思わずにはいられません。データベースはあらゆるところで使われており、その種類も、小規模で便利なSQLiteからパワフルなTeradataまで様々です。しかし、それがどういう仕組みで機能しているかを説明したものとなると、その数はごくわずかではないでしょうか。例えば「リレーショナルデータベース 仕組み」などで検索してみてください。ヒット数の少なさを実感できると思います。さらにそれらの記事は短いものがほとんどです。逆に、近年流行している技術(ビッグデータ、NoSQLJavaScriptなど)を検索した場合、それらの機能を詳しく説明した記事はたくさん見つかると思います。 リレーショナルデータベースは、もはや大学の授業や研究論文、専門書などでしか扱われないような古くて退屈な技術なのでしょうか? 私は開発者として、理解していないものを

    リレーショナルデータベースの仕組み (1/3) | POSTD
  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • 末尾再帰による最適化 - Qiita

    はじめに ES6 (EcmaScript 6)を試そうと、Babelのドキュメントを読んでいたところ、末尾呼び出し(Tail Call)の最適化をしていることにびっくり。公式リリース(2015年6月)から3ヶ月あまり経ってはいますが、ES6が末尾呼び出し最適化を仕様としてサポートしていることをようやく知りました。 現状で末尾呼び出し最適化をサポートしているブラウザはなく(ブラウザやaltJSなどのES6互換表を参照)、唯一、ES6からES5へのトランスパイラであるBabelのみが部分的(直接的な末尾再帰のみ)ではありながらサポートしているようですね。 今回の記事では、来たるES6時代(いまさらの感はありますが)に備えて、末尾再帰とその最適化について簡単に解説した上で、Babelを利用して実際にJavaScriptでの末尾再帰の最適化を実験してみたいと思います。 ざっくり概要 再帰関数 は関

    末尾再帰による最適化 - Qiita
  • なぜBTreeがIndexに使われているのか - maru source

    ※この内容は個人的な考察なので、間違っている箇所もあると思います。そういう部分を見つけた際はぜひ教えて下さい。 RDBMSの検索を早くするためにIndexって使いますよね。例えばこんなテーブル CREATE TABLE user ( id INT UNSIGNED NOT NULL, name VARCHAR(255) NOT NULL, UNIQUE INDEX (id) ); idカラムにIndexを張っています。これはidでの検索を高速にするためです。ここでidカラムにIndexが貼っていない場合と比べると検索時間が大幅に変わってきてしまいます(特にレコードが多くなった時) ではなぜIndexを貼ると検索が早くなるんでしょう?? Indexとはその名の通り索引を意味します。特定のカラムの索引を作成しておくことで検索を高速化します。 (の最後によみがな順で単語が並べられたりしています

    なぜBTreeがIndexに使われているのか - maru source
  • ダイクストラ法が分からなかった君のために - kuuso1のブログ

    これはCompetitive Programming Advent Calendar 2015 の19日目の記事です。 さて、表題の通りこの記事はダイクストラ法についての思い出を語るものです。 競プロライフも2周年を迎え、取り組み始めたころに比べればかなりいろいろな問題も解けるようになりますます楽しくなってきたのですが、最初の頃割と長い間しっくりこないというか苦手意識のあったダイクストラ法について、振り返りながらいろいろ書いてみようと思います。 対象としてはダイクストラが分からなくてググるくらいの人も想定しています。ので多少くどい感じですがご容赦のほど。あともし大きな間違い等あればお知らせください。 ダイクストラ法とは ダイクストラ法 - Wikipedia いきなりwikipediaを貼ってしまいましたが、グラフにおいてある頂点から別の頂点への最短距離を求める問題(単一始点最短経路問題)

    ダイクストラ法が分からなかった君のために - kuuso1のブログ
  • 知れば天国、知らねば地獄――「探索」虎の巻

    いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、連載では

    知れば天国、知らねば地獄――「探索」虎の巻
  • Ruby 「エラトステネスの篩」を通してアルゴリズムの威力を体感する - Qiita

    Ruby で実装するエラトステネスのふるい 小波秀雄(pdf) 」の良質な記事を参照している エラトステネスの篩とは素数を見つけ出すためのアルゴリズムである。 まず最初の素数である2の倍数を削除していく、次に残った数の最初に来る数、3の倍数を削除していく。次にくる数、5の倍数を削除していく。 同じような動作を延々と続けて素数を見つける。 この記事はエラトステネスの篩を通してアルゴリズムの威力を体感する事が目的 require 'benchmark' def erato_1(n) numbers = (2..n).to_a # 2 ~ n の配列を用意 primes = [] # 素数を放り込むための配列 loop do d = numbers.shift # 配列の先頭要素を取り出して break if d == nil # nil なら終了 primes << d # 素数の配列に追加

    Ruby 「エラトステネスの篩」を通してアルゴリズムの威力を体感する - Qiita
  • Spaghetti Source - 各種アルゴリズムの C++ による実装

    ACM/ICPC(プログラミングコンテスト)系列の問題を解くことを目標にして,各種アルゴリズムを C++ で実装してみた.極めて意地が悪い類の問題には対応していないし,特定の入力に対して高速に動くということもない.計算量も最良とは限らない. これらを参考にする方への注意とお願い: これらの記述は正確とは限りません.参考文献を参照することを強く推奨します.間違っている場合は是非教えてください. これらのプログラムは間違っているかもしれません.各人で検証することを強く推奨します.バグがあれば是非教えてください. 分類が怪しいので,これはこっちだろう,ということがあればコメントを下さると助かります. 注意! 現在書き換え中 TODO 分類を正しく行う. 全体的に説明と使い方を詳しく. Verify していないものを Verify. ボロノイ図(いつになることやら……) 基 テンプレート グラフ

  • visualising data structures and algorithms through animation - VisuAlgo

    VisuAlgo.net/en visualising data structures and algorithms through animation VisuAlgo is a trilingual site. Try visiting the other versions of VisuAlgo other than the default English version, e.g., Chinese or Indonesian. Users can see the translation statistics for these three pages. We aim to make all three has near 100% translation rate. Unfortunately the translation progress with other language

    visualising data structures and algorithms through animation - VisuAlgo
  • 1