タグ

deeplearningに関するy_uukiのブックマーク (25)

  • 実践 Deep Learning

    2000年代にニューラルネットワークの研究が再び活発になりました。現在、ディープラーニングは近代的な機械学習の道を切り開いている非常に活発な研究領域となっています。GoogleMicrosoft、Facebookなどの企業では、社内のディープラーニングチームが急成長しています。しかし、多くの人にとってディープラーニングはまだまだとても複雑で困難な課題です。書ではサンプルのPython 3プログラムと簡潔な説明を通してこの複雑な分野の主要な概念を紹介します。微積分、行列演算、Pythonの基礎があれば誰でも書を始めることができます。 監訳者まえがき まえがき 1章 ニューラルネットワーク 1.1 知的な機械を作るということ 1.2 従来のプログラムの限界 1.3 機械学習のしくみ 1.4 ニューロン 1.5 線形パーセプトロンをニューロンとして表現する 1.6 フィードフォワードニュー

    実践 Deep Learning
  • 深層学習を用いた時系列データにおける異常検知 - 株式会社カブク

    はじめに カブクで機械学習エンジニアをしている大串正矢です。今回は深層学習を用いた時系列データにおける異常検知について書きます。 背景 深層学習を異常検知に使用するにあたって閾値設定や評価尺度であるROCについての記述が日語のウェブの資料で見つけられなかったのでブログで記述することにしました。以前のブログに異常検知の基礎的な内容があるのでその内容を踏まえた上で読んで頂けると理解がしやすいと思います。 異常検知の基礎 時系列データにおける異常検知 情報圧縮に関するモデル(AutoEncoderなど) 利点: RNNなどに比べ少ないパラメータで学習可能なため高速 欠点: 系列データ特有の過去の値を考慮した予測ができない 系列データに関するモデル(RNNなど) 利点: 系列データ特有の過去の値を考慮した予測が可能 欠点: 構造上、GPU上での並列化が難しいため学習に時間がかかる 記事では系

    深層学習を用いた時系列データにおける異常検知 - 株式会社カブク
  • ディープラーニングの限界 | POSTD

    (注:2017/04/08、いただいたフィードバックを元に翻訳を修正いたしました。 @liaoyuanw ) この記事は、私の著書 『Deep Learning with PythonPythonを使ったディープラーニング)』 (Manning Publications刊)の第9章2部を編集したものです。現状のディープラーニングの限界とその将来に関する2つのシリーズ記事の一部です。 既にディープラーニングに深く親しんでいる人を対象にしています(例:著書の1章から8章を読んだ人)。読者に相当の予備知識があるものと想定して書かれたものです。 ディープラーニング: 幾何学的観察 ディープラーニングに関して何より驚かされるのは、そのシンプルさです。10年前は、機械認識の問題において、勾配降下法で訓練したシンプルなパラメトリックモデルを使い、これほど見事な結果に到達するなど誰も想像しませんでした。

    ディープラーニングの限界 | POSTD
  • Deep Learning_ Practice and Trends - final.pdf

    ログイン

    Deep Learning_ Practice and Trends - final.pdf
  • ニューラルネットの逆襲から5年後 | Preferred Research

    私が2012年にニューラルネットの逆襲(当時のコメント)というのをブログに書いてからちょうど5年が経ちました。当時はまだDeep Learningという言葉が広まっておらず、AIという言葉を使うのが憚られるような時代でした。私達が、Preferred Networks(PFN)を立ち上げIoT、AIにフォーカスするのはそれから1年半後のことです。 この5年を振り返る良いタイミングだと思うので考えてみたいと思います。 1. Deep Learning Tsunami 多くの分野がこの5年間でDeep Learningの大きな影響を受け、分野特化の手法がDeep Learningベースの手法に置き換わることになりました。NLP(自然言語処理)の重鎮であるChris Manning教授もNLPで起きた現象を「Deep Learning Tsunami」[link] とよびその衝撃の大きさを表して

    ニューラルネットの逆襲から5年後 | Preferred Research
  • 人工知能は Deep Learning によって成されるのか? - Sideswipe

    最近は人工知能分野の話題に事欠かないので、IT系に詳しくない人でも、Deep Learning がどうとか、人工知能がどうとかという話題を耳にすることが多いと思います。 も杓子も Deep Learning な世の中ですが、そもそも人工知能とか Deep Learning ってなんなんだっけ? という疑問に答えられる人は多くないはずです。 今回は、広く浅く、人工知能と Deep Learning について書きます (この記事をご覧になればわかるように、人工知能 = Deep Learning では決して無いのですが、両者はよく並んで紹介されるので、ここでも同列に書いています)。 最初に結論 Deep Learning は(真の)人工知能ではない。なんでもかんでも人工知能って呼ばない。 「Deep Learning」、「人工知能」ともにバズワード*1になりつつあるので気をつけよう。 コンピ

    人工知能は Deep Learning によって成されるのか? - Sideswipe
  • 深層学習の非常に簡単な説明

    「『内積』を知っている人に,深層学習の中身がだいたいわかってもらう」ことを目指しています.これぐらいをスタートに,理解を深めていけばいいのではないかと思いました.ちなみに学習(例えばback propagationあたりの)の部分については,特に触れていません.それ以前の基の部分です. (2017.1.28, 少々補足スライドをいれて,初学者向けにさらにわかりやすくしたつもりです.) なお,ここで出てくる数式は,せいぜい足し算と掛け算ぐらいです.Read less

    深層学習の非常に簡単な説明
  • SankeiBiz(サンケイビズ):自分を磨く経済情報サイト

    サービス終了のお知らせ SankeiBizは、2022年12月26日をもちましてサービスを終了させていただきました。長らくのご愛読、誠にありがとうございました。 産経デジタルがお送りする経済ニュースは「iza! 経済ニュース」でお楽しみください。 このページは5秒後に「iza!経済ニュース」(https://www.iza.ne.jp/economy/)に転送されます。 ページが切り替わらない場合は以下のボタンから「iza! 経済ニュース」へ移動をお願いします。 iza! 経済ニュースへ

    SankeiBiz(サンケイビズ):自分を磨く経済情報サイト
  • Engadget | Technology News & Reviews

    Research indicates that carbon dioxide removal plans will not be enough to meet Paris treaty goals

  • AlphaGo Zeroの論文の要約 : ブログ

    AlphaGo Zeroが自己学習のみで過去最強になったというニュースが出たのでその元論文を読み、要約をしました。 まず感想を述べると、過去数千年にわたって蓄積してきた知識をAIが数時間で発見することに対する気持ち良さがありました。人間などクソらえと思っておりますので、こう言うニュースはとてもスッキリします。そして人間の発見していない打ち筋の発見にも感動しました。これこそがAIの真髄だと信じています。人間が見えていないものをAIが見つける、僕もいつかそんなことをしてみたいと思いながら生きています。 あともう一つ重要だと思ったのは、とてもネットワーク構造および学習過程が簡素化されたことです。マシンパワーも過去に比べて非常に少なく済み、個人でもすぐに再現実験ができそうなくらいです。AIが強くなることと、構造および学習のsimplerが同時に達成できていることが質的だと思います。 一応、下記

    AlphaGo Zeroの論文の要約 : ブログ
  • GPUでディープラーニングやるならAWSよりFloydHub - Qiita

    UdacityのDeep Learning Nanodegree Foundation のコースでFloydHubという便利なサービスが紹介されていました。ディープラーニングのHerokuだそうです。 GPUが使えるプランも月額14ドルからなので、手軽にGPUでディープラーニングを始めることができます。 TensorFlowとKerasがデフォルトですが、他にもPyTorchやChainerなどメジャーなフレームワークはだいたい使えるようになっています。 2017/10/18 追記 この記事を書いた直後に、KaggleのKernelについての記事が投稿されています。Kaggleのデータセットに限って言えば、Kernelを使う方が簡単そうです。 パワーアップしたKernelでKaggleに飛び込もう - Qiita FloydHubのいいところ 起動が簡単 floyd-cliというコマンドラ

    GPUでディープラーニングやるならAWSよりFloydHub - Qiita
  • ディープラーニングの判断根拠を理解する手法 - Qiita

    ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在しており、そこから学習された「何か」を人間が理解可能な形で取り出すというのは至難の業です。 例題:このネットワークが何を根拠にとして判断しているか、ネットワークの重みを可視化した上図から答えよ(制限時間:3分) image from CS231n Visua

    ディープラーニングの判断根拠を理解する手法 - Qiita
  • Deep Learning

    This domain may be for sale!

    Deep Learning
  • Using Deep Learning at Scale in Twitter’s Timelines

    For more than a year now since we enhanced our timeline to show the best Tweets for you first, we have worked to improve the underlying algorithms in order to surface content that is even more relevant to you. Today we are explaining how our ranking algorithm is powered by deep neural networks, leveraging the modeling capabilities and AI platform built by Cortex, one of our in-house AI teams at Tw

    Using Deep Learning at Scale in Twitter’s Timelines
  • Deep Learning Image Recognition Using GPUs in Amazon ECS Docker Containers

    Update: it’s no longer necessary to copy the drivers into the runtime and expose volumes from the host. We’ve written up a “How To” on the the new process here: https://medium.com/@bfolkens/deep-learning-image-recognition-using-gpus-in-amazon-ecs-docker-containers-part-ii-56748701b116 Scaling up a web service was once a nightmare among DevOps. Provisioning and maintaining ‘N’ machines, handling fa

    Deep Learning Image Recognition Using GPUs in Amazon ECS Docker Containers
  • Googleが出した囲碁ソフト「AlphaGo」の論文を翻訳して解説してみる。 - 7rpn’s blog: うわああああな日常

    就活も無事終わったので,一番やりたかったAlphaGoの論文を翻訳しました。 ご存知の通り,長らく世界最強だった囲碁棋士イ・セドル九段を破ったGoogleの囲碁プログラムです。 論文の内容に触れつつ何となく解説入れていきたいと思います。なるべく囲碁やDeepLearningを知らない初心者の人とかでも仕組みを理解できるように分かりやすく書いていければいいなと思います。 原題は"Mastering the game of Go with deep neural networks and tree search"。 とりあえず最初の要約の訳から。 謎の単語とかは後から説明入れるので,さらっと流し読みしていただければ。 囲碁はこれまでAIにとってとても難しいゲームだとみなされてきた。それは探索範囲がとても広いことと,盤面の評価が難しいため。 この論文では,コンピュータを用いた囲碁の新しいアプロー

    Googleが出した囲碁ソフト「AlphaGo」の論文を翻訳して解説してみる。 - 7rpn’s blog: うわああああな日常
    y_uuki
    y_uuki 2017/01/05
    おもしろい
  • DeepLearning研究 2016年のまとめ - Qiita

    DeepLearning Advent Calendar 2016の17日目の記事です。 はじめに はじめまして。 Liaroという会社でエンジニアをしている@eve_ykと申します。 今年もあと僅かとなりました。 ここらで、今年のDeepLearningの主要な成果を振り返ってみましょう。 この記事は、2016年に発表されたDeepLearning関係の研究を広く浅くまとめたものです。今年のDeepLearningの研究の進歩を俯瞰するのに役立てば幸いです。 それぞれの内容について、その要点や感想なんかを簡単にまとめられたらと思います。 特に重要だと思った研究には★マークをつけておきます。 非常に長くなってしまったため、興味のある分野だけ読んでいただければと思います。 言い訳とお願い 見つけたものはコードへのリンクも示すので、プログラミングに関係ある記事ということで… 分野的にかなり偏っ

    DeepLearning研究 2016年のまとめ - Qiita
  • 2016年のディープラーニング論文100選 - Qiita

    これはFujitsu Advent Calendar 2016の11日目の記事です。 掲載内容は個人の意見・見解であり、富士通グループを代表するものではありません。なお、内容の正確性には注意を払っていますが無保証です。 はじめに この記事では先月今年発表されたディープラーニング論文(ArXivでの発表時期、発表された国際会議が2016年開催またはジャーナル掲載が2016年のもの)から私が個人的に重要だと思った論文を収集しています。また、2015年末ごろの論文も重要なものは採用しています。 以下の投稿も合わせてご覧ください。 2017年のディープラーニング論文100選 DeepLearning研究 2016年のまとめ 2016年の深層学習を用いた画像認識モデル foobarNet: ディープラーニング関連の○○Netまとめ NIPS2016実装集 ディープラーニングにとっての2016年 20

    2016年のディープラーニング論文100選 - Qiita
  • MXNet - Deep Learning Framework of Choice at AWS

    MXNet - Deep Learning Framework of Choice at AWSNovember 22, 2016 • 1287 words Machine learning is playing an increasingly important role in many areas of our businesses and our lives and is being employed in a range of computing tasks where programming explicit algorithms is infeasible. At Amazon, machine learning has been key to many of our business processes, from recommendations to fraud detec

    MXNet - Deep Learning Framework of Choice at AWS
  • Zero-Shot Translation with Google’s Multilingual Neural Machine Translation System

    Posted by Mike Schuster (Google Brain Team), Melvin Johnson (Google Translate) and Nikhil Thorat (Google Brain Team) In the last 10 years, Google Translate has grown from supporting just a few languages to 103, translating over 140 billion words every day. To make this possible, we needed to build and maintain many different systems in order to translate between any two languages, incurring signif

    Zero-Shot Translation with Google’s Multilingual Neural Machine Translation System