タグ

Wikiと数学に関するiwwのブックマーク (12)

  • 次元の呪い、あるいは「サクサクメロンパン問題」 - 蛍光ペンの交差点

    超球の体積、すなわち多次元空間における球は、一般的に私たちが観測する3次元の球体の体積とは遥かに異質な性質を示すらしい。 機械学習の有名な教科書によれば、 Our geometrical intuitions, formed through a life spent in a space of three dimensions, can fail badly when we consider spaces of higher dimensionality. 拙訳: 我々の幾何学に関する直観は、3次元空間の中で過ごした人生の中で形成されたものだが、高次元空間を考えるときには、まるで役立たないことがある。 ("パターン認識と機械学習 上", 原書, p.36) ... in spaces of high dimensionality, most of the volume of a spher

    次元の呪い、あるいは「サクサクメロンパン問題」 - 蛍光ペンの交差点
    iww
    iww 2021/02/08
    記事を作らされそうになって怖い
  • ニコラ・ブルバキ - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2015年7月) ニコラ・ブルバキ(仏: Nicolas Bourbaki, ブールバキとも)は、架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日で出版された38冊に及ぶ[1]数学原論や、定期的に開催されるセミネール・ブルバキ(英語版)で有名。 概要[編集] 1934年に解析学の教科書を編纂するプロジェクトが始まり、1935年にブルバキという架空人物が生み出され、論文を発表。後に「1886年生、モルダヴィア出身」というプロフィールが与えられた。 1939年、数学原論を刊行しはじめたとき、論文紹介雑誌Mathe

    iww
    iww 2020/07/03
    秘密結社
  • コラッツの問題 - Wikipedia

    コラッツマップ下の軌道を有向グラフにしたもの。コラッツ予想は、すべてのパスが1に至るということと同値である。 コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれる[1]が、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者や場所の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた[2]。 2019年9月、テレンス・タオはコラッツの問題がほとんどすべての正の整数

    コラッツの問題 - Wikipedia
  • 六万五千五百三十七角形 - Wikipedia

    正65537角形を描くSVGの出力結果。ほとんど円と見分けがつかない。 六万五千五百三十七角形(ろくまんごせんごひゃくさんじゅうしちかくけい、ろくまんごせんごひゃくさんじゅうななかっけい)は、65537の辺と65537個の頂点を持つ多角形である。内角の和は11796300°、対角線の数は2147450879である。 正65537角形は、定規とコンパスで作図できる。作図可能な正多角形は無数に存在するが、正多角形の作図法は正素数角形の場合に帰着されるのであり、正65537角形は作図可能な正素数角形のうちで辺の個数が最大であると予想されている正多角形である。以下、正65537角形について記述する。 性質[編集] 正65537角形の形状は、辺の数が非常に多いためほとんど真円と見分けが付かない。正65537角形の中心角と外角の大きさは

    六万五千五百三十七角形 - Wikipedia
    iww
    iww 2013/11/09
    『ドイツのヨハン・グスタフ・ヘルメスは、10年の歳月をかけて正65537角形の作図法を調べ、1894年に計算の要旨のみの報告を雑誌に発表した。200ページを超える原稿は、ゲッティンゲン大学に保管されている。』
  • 冪等 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "冪等" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年10月) 数学において、冪等性(べきとうせい、英: idempotence、「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ=same)と"potere"(冪=power)から来ている。 主に以下の2つの定義

    iww
    iww 2013/06/25
    べきとう。 何回やっても同じ結果になることが保証されれば、連打されても困らない。
  • バーチ・スウィンナートン=ダイアー予想 - Wikipedia

    数学において、バーチ・スウィンナートン=ダイアー予想(バーチ・スウィンナートン=ダイアーよそう、英語: Birch and Swinnerton-Dyer conjecture)は、数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれ、最も難しい数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている[1]。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチとピーター・スウィンナートン=ダイアーにちなんで名づけられている。2014年現在、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの L

    バーチ・スウィンナートン=ダイアー予想 - Wikipedia
    iww
    iww 2012/11/25
    1億円の懸賞
  • メルセンヌ・ツイスタ - Wikipedia

    メルセンヌ・ツイスタ (Mersenne twister、通称MT) は擬似乱数列生成器 (PRNG) の1つである。1996年に国際会議で発表されたもので(1998年1月に論文掲載)松眞と西村拓士による。既存の疑似乱数列生成手法にある多くの欠点がなく、高品質の疑似乱数列を高速に生成できる。考案者らによる実装が修正BSDライセンスで公開されている。 特徴[編集] 「メルセンヌ・ツイスタ」は厳密にはある手法に基づいた乱数列生成式(あるいは生成法)の族を指し、内部状態の大きさや周期は設定可能である。以下の長所と短所では、メルセンヌ・ツイスタ自体、よく使われている生成法のMT19937、さらにその実装について、区別することなく述べている。 長所[編集] 219937-1 (≒4.315×106001) という長い周期が証明されている。 この周期は、名前の由来にもなっているように(24番目の)メ

  • ファインマン・ポイント - Wikipedia

    円周率の最初の数百桁には、多くの連続した2個の数字(黄色)と いくつかの連続した3個の数字(緑色)が現れる。6個連続した数字(赤色)がこの少ない桁数の中に現れることは、興味深く、奇異でさえある。 ファインマン・ポイント(英語:Feynman point)とは、円周率を十進法で表記したときに、小数点以下762桁目から始まる6個の「9」の並びのことである。この名称は、リチャード・ファインマンが円周率をこの桁まで暗記したいと講義の中で述べたとされることから名づけられた。ファインマンはこれを暗誦し、最後に「9, 9, 9, 9, 9, 9 以下続く (and so on.)」と締めくくったという[1][2]。ファインマンがいつこの発言をしたのか、そもそも当にこの発言をしたのかは不明確である。公開された伝記や彼の自伝で言及されていないし、彼の伝記を著したジェームス・グリーク(英語版)も、この話は知

    ファインマン・ポイント - Wikipedia
    iww
    iww 2012/06/28
    『円周率はランダムな数字の並びであり[要出典]、』
  • メンガーのスポンジ - Wikipedia

    メンガーのスポンジのイメージ メンガーのスポンジとは自己相似なフラクタル図形の一種であり、立方体に穴をあけたものである。そのフラクタル次元(ハウスドルフ次元、相似次元)は 次元である。メンガーのスポンジの面は同じくフラクタル図形のシェルピンスキーのカーペットでできている。 メンガーのスポンジはフラクタル図形であるため、正確に作図することはできない。 面積[編集] メンガーのスポンジの次元は2より大きいため、2次元的な大きさである面積は無限である。 表面積が1となる大きな立方体から穴を空けてメンガーのスポンジを構成する場合、一度目の穴を空けると、その表面積は増加する。 穴を空ける回数をとすると、その表面積はと表すことができ、これは無限回繰り返した時、無限大に発散する。 体積[編集] メンガーのスポンジの次元は3より小さい(2.73次元)ため、3次元的な大きさである体積は 0 である。 実際、

    メンガーのスポンジ - Wikipedia
    iww
    iww 2011/07/04
    Dirty deeds done dirt cheap.
  • ほとんど整数 - Wikipedia

    ある数がほとんど整数(ほとんどせいすう、英: almost integer)であるとは、整数ではないが、整数に非常に近いことを意味する。どれほど近ければ十分であるのか明確な決まりはないが、一見して整数に近いとは分からないのに、近似値を計算すると驚くほど整数に近い数で、小数点以下の部分が「.000…」または「.999…」のように、0か9が数個連続する場合、このように表現される。例えば、「インドの魔術師」の異名をもつシュリニヴァーサ・ラマヌジャンは など、整数に近い数の例をいくつか与えた[1]。また、黄金比 φ = 1.618… の累乗、例えば は整数に近い。整数に近い数を与えることは、単なる趣味の範疇であることが多いが、意義深い数学的な理論が背景にあることも少なくはない。 整数に近い理由[編集] 整数に近い値となることについては、理由を説明すれば自明なもの、単純な説明が与えられるもの、あるい

    ほとんど整数 - Wikipedia
  • ヤニス・クセナキス - Wikipedia

    ヤニス・クセナキス(ギリシャ語: Ιάννης Ξενάκης [ˈʝanis kseˈnacis]、ラテン文字:Iannis Xenakis、カナ表記によってはイアニス・クセナキス、英語圏の発音ではゼナキス、後半生を過ごしたフランス語圏の発音に従えばグゼナキスとも、 1922年5月29日 - 2001年2月4日[1])は、ルーマニア生まれのギリシャ系フランス人の現代音楽作曲家。建築家。 略歴[編集] アテネ工科大学(英語版)で建築と数学を学び、第2次世界大戦中にギリシャ国内で反ナチス・ドイツのレジスタンス運動に加わる。枢軸軍のギリシャ退去後に進駐して来た英軍と戦った際に、銃弾を受け顔の左側に傷を負い左目を失う。大戦後は独裁的新政府に抵抗する運動に加わるが、1947年にレジスタンス活動家に捕縛の危機が迫ったためにギリシャを脱出。アメリカへ亡命しようと立ち寄ったパリに定住した。欠席裁判で死刑

    ヤニス・クセナキス - Wikipedia
  • 超準解析 - Wikipedia

    ゴットフリート・ライプニッツは無限小たちを含む理想的数を導入することを主張した。 微分積分学の歴史英語版)は、流率法(英語版)あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(英: nonstandard analysis)[1][2][3]は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった[4][5]。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 超準解析は1960年代に数学者アブラハム・ロビンソンによって創始され

    超準解析 - Wikipedia
  • 1