タグ

mathとwikipediaに関するa2ikmのブックマーク (11)

  • アティヤ=シンガーの指数定理 - Wikipedia

    アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素について、解析的指数と呼ばれる量と位相的指数と呼ばれる量とが等しいという定理である。解析的指数は与えられた楕円型微分作用素が定める偏微分方程式の解の次元を表す解析的な量であり、一方で位相的指数は微分作用素の主表象をもとにして多様体のコホモロジーを通じて定義される幾何的な量である。従って指数定理は解析学と幾何学という見かけ上異なった体系の間のつながりを与えているという意味で20世紀の微分幾何学における最も重要な定理ともいわれる。 稿で述べる形の指数定理はマイケル・アティヤとイサドール・シンガーによって1963年に発表[1]され、1968年に証明[2] [3]が刊行された。指数定理の特別な場合として、以前

    a2ikm
    a2ikm 2020/11/07
    “Atiyah-Singerの定理を使うと、アノマリーに幾何学的な意味を与えることができる。”
  • サンクトペテルブルクのパラドックス - Wikipedia

    ダニエル・ベルヌーイ サンクトペテルブルクのパラドックス (St. Petersburg paradox) は、意思決定理論におけるパラドックスの一つである。極めて少ない確率で極めて大きな利益が得られるような事例では、期待値が発散する場合があるが、このようなときに生まれる逆説である。サンクトペテルブルクの賭け、サンクトペテルブルクの問題などとも呼ばれる。「サンクトペテルブルク」の部分は表記に揺れがある。 1738年、サンクトペテルブルクに住んでいたダニエル・ベルヌーイが、学術雑誌『ペテルブルク帝国アカデミー論集』の論文「リスクの測定に関する新しい理論」で発表した。その目的は、期待値による古典的な「公平さ」が現実には必ずしも適用できないことを示し、「効用」(ラテン語: emolumentum)についての新しい理論を展開することであった。 パラドックスの内容[編集] 偏りのないコイン[注釈 1

    サンクトペテルブルクのパラドックス - Wikipedia
  • 情報量 - Wikipedia

    情報量(じょうほうりょう)やエントロピー(英: entropy)は、情報理論の概念で、あるできごと(事象)が起きた際、それがどれほど起こりにくいかを表す尺度である。ありふれたできごと(たとえば「風の音」)が起こったことを知ってもそれはたいした「情報」にはならないが、逆に珍しいできごと(たとえば「曲の演奏」)が起これば、それはより多くの「情報」を含んでいると考えられる。情報量はそのできごとが質的にどの程度の情報を持つかの尺度であるとみなすこともできる。 なおここでいう「情報」とは、あくまでそのできごとの起こりにくさ(確率)だけによって決まる数学的な量でしかなく、個人・社会における有用性とは無関係である。たとえば「自分が宝くじに当たった」と「見知らぬAさんが宝くじに当たった」は、前者の方が有用な情報に見えるが、両者の情報量は全く同じである(宝くじが当たる確率は所与条件一定のもとでは誰でも同じ

  • 充足可能性問題 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Boolean satisfiability problem|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な

  • Methods of computing square roots - Wikipedia

    Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational,[1] square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations. Most square root computation me

    Methods of computing square roots - Wikipedia
  • パーセヴァルの等式 - Wikipedia

    数学の解析学の分野において、マーク・アントワーヌ・パーセヴァル(英語版)の名にちなむパーセヴァルの等式(パーセヴァルのとうしき、英: Parseval's identity)は、函数のフーリエ級数の総和可能性に関する基的な結果である。幾何学的には、内積空間に対するピタゴラスの定理と見なされる。 大雑把に言うと、この等式では、函数のフーリエ係数の二乗の和が、その函数の二乗の積分と等しいことが示される。すなわち が成立する。ここで cn は ƒ のフーリエ係数で、次式で与えられる: 正確には、この結果は ƒ が自乗可積分あるいはより一般に L2[−π,π] に属する場合に成立する。類似の結果として、函数のフーリエ変換の二乗の積分が、その函数の二乗の積分と等しいというプランシュレルの定理がある。すなわち、1 次元の場合は、ƒ ∈ L2(R) に対して次の等式が成立する: ピタゴラスの定理の一般

  • モンティ・ホール問題 - Wikipedia

    サヴァントの再再々解説でも大論争へと発展、「彼女こそ間違っている」という感情的なジェンダー問題にまで飛び火した。 プロ数学者ポール・エルデシュの弟子だったアンドリュー・ヴァージョニが問題を自前のパーソナルコンピュータでモンテカルロ法を用いて数百回のシミュレーションを行うと、結果はサヴァントの答えと一致。エルデシュは「あり得ない」と主張していたがヴァージョニがコンピュータで弾き出した答えを見せられサヴァントが正しかったと認める[1]。その後、カール・セーガンら著名人らがモンティーホール問題を解説、サヴァントの答えに反論を行なっていた人々は、誤りを認める。 サヴァントは、「最も高い知能指数を有する者が、子供でもわかる些細な間違いを新聞で晒した」等の数多くの非難に対して3回のコラムをこの問題にあて、激しい反論の攻撃に耐えて持論を擁護し通し、証明した[2]。それによると、ドアの数を100万に増や

    モンティ・ホール問題 - Wikipedia
  • グラフ彩色 - Wikipedia

    3色に頂点彩色(最適彩色)されたグラフ。ピーターセングラフの彩色数は3である。 グラフ彩色(グラフさいしょく、英: Graph coloring)とは、グラフの何らかの要素に、ある制約条件を満たすように色を割り当てることである。最も単純なものは、隣接する頂点同士が同じ色にならないように全頂点に彩色する問題である。これを頂点彩色(ちょうてんさいしょく)という。同様に辺彩色(へんさいしょく)は、隣接する辺同士が同じ色にならないように全辺を彩色する問題、面彩色(めんさいしょく)は、平面グラフの辺で囲まれた各領域(面)を隣接する面同士が同じ色にならないように彩色する問題である。 概要[編集] 頂点彩色が出発点であり、他の彩色問題は頂点彩色に変換可能である。例えば、辺彩色問題は、そのグラフをライングラフに変換したときの頂点彩色と同じであり、面彩色は平面グラフの双対グラフの頂点彩色と同じである。しかし

    グラフ彩色 - Wikipedia
  • ポアンカレ予想 - Wikipedia

    予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである[2][3]。2014年現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL、微分)があり、かなり解けているが 「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決である。 これらは非常に重要な問題である[4][5][6]。 概説[編集] 図のトーラス上の2色のループは双方共に1点に収縮できない。よってトーラスは球と同相では無い。 ポアンカレ予想は、1904年にフランスの数学者アン

    ポアンカレ予想 - Wikipedia
    a2ikm
    a2ikm 2018/04/24
    “まず、ポアンカレ予想を解かれたことに落胆し、それがトポロジーではなく微分幾何学を使って解かれたことに落胆し、そして、その解説がまったく理解できないことに落胆した”
  • ユークリッドの互除法 - Wikipedia

    252と105のためのユークリッドの互除法のアニメーション。 クロスバーは、最大公約数(GCD)である21の倍数を表す。 それぞれのステップにおいて、1つの番号がゼロになるまで、より少ない数はより大きな数から引かれる。 残りの数は、GCD。 ユークリッドの互除法(ユークリッドのごじょほう、英: Euclidean Algorithm)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムと

    ユークリッドの互除法 - Wikipedia
  • 四元数 - Wikipedia

    数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいて三次元での回転の計算(英語版)でも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ[1][2]、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元

    四元数 - Wikipedia
  • 1