タグ

mathとWikipに関するshimomurayoshikoのブックマーク (17)

  • ヒルベルトの第12問題 - Wikipedia

    ヒルベルトの第12問題(ヒルベルトのだい12もんだい、英: Hilbert's twelfth problem; ヒルベルトの23の問題より)またはクロネッカーの青春の夢(クロネッカーのせいしゅんのゆめ、Kronecker's Jugendtraum)は、「代数体のアーベル拡大は、もとの体に適当な解析函数の特殊値を添加してできる拡大体に含まれなければならない」という代数体のアーベル拡大を具体的に構成する方法を問う問題である。 有理数体にたいしては、そのアーベル拡大は円分体にふくまれるというクロネッカー・ウェーバーの定理が知られており、円分体は1のべき根により生成されるという具体的な構成法があたえられる。 虚数乗法の古典的な理論は「クロネッカーの青春の夢」として知られており、上の問題において代数体として虚二次体を選んだ場合の解答である。クロネッカーは、気に入った青春の夢 liebster J

  • 円錐曲線 - Wikipedia

    円錐曲線は、xy-平面 R2 上で定義され、次の陰関数曲線によって与えることが出来る。 また、任意の2次式 P(x,y) に対し、P(x,y) = 0 が円錐曲線になTることから、円錐曲線は二次曲線とも呼ばれる。 任意の円錐曲線は、適当に直交変換することによって、次の形のいずれかに変形することができる(括弧内は円錐の切断方法)。 円(全ての母線と交わり、底面に平行な平面で切断) 楕円(全ての母線と交わり、底面に平行でない平面で切断) 放物線(母線に平行な面で切断) 双曲線(母線に平行でない平面で切断) 二直線(軸を全て含む平面で切断) 尚、全て p>0, q>0 である。上の形の式を円錐曲線の標準形という。ただし、二直線は退化していると考え、円錐曲線に含まない場合も多い。また、楕円と正円とは円錐曲線の種別としてはしばしば区別を受けない。学問によっては、正円を円錐曲線に含まないこともある。

    円錐曲線 - Wikipedia
  • ルンゲ=クッタ法 - Wikipedia

    数値解析においてルンゲ=クッタ法(英: Runge–Kutta method)とは、初期値問題に対して近似解を与える常微分方程式の数値解法に対する総称である。この技法は1900年頃に数学者カール・ルンゲとマルティン・クッタによって発展を見た。 古典的ルンゲ=クッタ法[編集] 一連のルンゲ=クッタ公式の中で最も広く知られているのが、古典的ルンゲ=クッタ法 (RK4、もしくは単に狭義の ルンゲ=クッタ法、英: the (classical) Runge–Kutta method) などと呼ばれる4次の公式である。 次の初期値問題を考える。 但し、y(t) が近似的に求めたい未知関数であり、その t における勾配は f(t, y) によって t 及び y(t) の関数として与えられている。時刻 t0 における初期値は y0 で与えられている。 今、時刻 tn における値 yn = y(tn) が

  • 位相空間 - Wikipedia

    数学における位相空間(いそうくうかん、英語: topological space)とは、集合Xに位相(topology)と呼ばれる構造を付け加えたもので、この構造はX上に収束性の概念を定義するのに必要十分なものである[注 1]。 位相空間の諸性質を研究する数学の分野を位相空間論と呼ぶ。 概要[編集] 位相空間は、前述のように集合に「位相」という構造を付け加えたもので、この構造により、例えば以下の概念が定義可能となる 部分集合の内部、外部、境界 点の近傍 収束性[注 1] 開集合、閉集合、閉包 実はこれらの概念はいわば「同値」で、これらの概念のうちいずれか一つを定式化すれば、残りの概念はそこから定義できる事が知られている。したがって集合上の位相構造は、これらのうちいずれか1つを定式化する事により定義できる。そこで学部レベルの多くの教科書では、数学的に扱いやすい開集合の概念をもとに位相構造を定

    位相空間 - Wikipedia
  • 位相幾何学 - Wikipedia

    一つの面と一つの辺を持つメビウスの帯は、位相幾何学の研究対象の一つである。 三葉結び目(もっとも単純な非自明な結び目) マグカップからドーナツ(トーラス)への連続変形(同相写像の一種)とその逆。 数学の一分野、位相幾何学(いそうきかがく、英: topology, トポロジー[注釈 1])は、その名称がギリシア語: τόπος(「位置」「場所」)と λόγος(「言葉」「学問」) に由来し、図形を構成する点の連続的位置関係のみに着目する幾何学[1]で「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(位相的性質または位相不変量)に焦点を当てたものである[2]。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる[3]。 位相幾何学は、空間、次元

    位相幾何学 - Wikipedia
  • オイラーの公式 - Wikipedia

    数学の複素解析におけるオイラーの公式(オイラーのこうしき、英: Euler's formula)とは、複素指数関数と三角関数の間に成り立つ、以下の恒等式のことである: ここで は任意の複素数、 はネイピア数、 は虚数単位、 は余弦関数、 は正弦関数である。 特に、 とする場合がよく使われ、この場合、 は、絶対値 , 偏角 の複素数に等しい。 オイラーの公式の図形的な表現。複素数平面において、複素数 eiθ は、単位円周上の偏角 θ [rad] の点を表す。 オイラーの公式は、複素解析をはじめとする数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要である。物理学者のリチャード・P・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている[1][2]。 概要[編集] この公式の名前は、18世紀の数学者レオンハルト・

    オイラーの公式 - Wikipedia
  • 多様体 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2015年11月) 好きなところに座標を描ける多様体 多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、解析学(微分積分学、複素解析)を展開するために必要な構造を備えた空間のことである(ただし位相多様体においてはその限りではない。ただ、単に多様体と言った場合、可微分多様体か複素多様体のことを指す場合が多い)。それは局所的にユークリッド空間と見なせるような図形や空間(位相空間)として定義される。多様体上には好きなところに局所的に座標を描き込むことができる。 直感的な説明[編集] 地球の地図 多様体に座標を描くという作業は地球上の地図を作る作業に似ている。地図の上の点は地球上の点に対応し、さらに地面には描かれていない緯線や

    多様体 - Wikipedia
  • 直交行列 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 直交行列(ちょっこうぎょうれつ, 英: orthogonal matrix)とは、転置行列と逆行列が等しくなる正方行列のこと。つまり n×n の行列 M の転置行列を MT と表すときに、 MTM = M MT = E を満たすような M のこと。ただし、 E は n 次の単位行列であり、 E 自身も直交行列である。 有限次元実計量ベクトル空間の直交変換は、ある正規直交基底に関して実直交行列(成分が全て実数の直交行列)によって定まる線形変換である。ただし、直交変換とは(必ずしも有限次元でない)実計量ベクトル空間 V において内積を変えない(等長性をもつ)線形変換 f のことである。すなわち、 v, w を V の任

  • 固有値と固有ベクトル - Wikipedia

    モナ・リザの画像(左図)を平行四辺形に線形変換した画像(右図)。この線形変換において、画像の中にある右向きの矢印(青色)は変化していないのに対し、上を向いた矢印(赤色)は方向が変化している。この青い矢印がこの変換における固有ベクトルであり、赤い矢印は固有ベクトルではない。ここで青い矢印は伸張も収縮もしていないので、この固有値は 1 である。このベクトルと平行なすべてのベクトルは固有ベクトルである。零ベクトルも含めて、これらのベクトルはこの固有値に対する固有空間を形成する。 数学の線型代数学において、線型変換の固有値(こゆうち、英: eigenvalue)とは、零ベクトルでないベクトルを線型変換によって写したときに、写された後のベクトルが写される前のベクトルのスカラー倍になっている場合の、そのスカラー量(拡大率)のことである。この零ベクトルでないベクトルを固有ベクトル(こゆうベクトル、英:

    固有値と固有ベクトル - Wikipedia
  • ノーフリーランチ定理 - Wikipedia

    ノーフリーランチ定理(ノーフリーランチていり、no-free-lunch theorem、NFLT)は、物理学者 David H. Wolpert と William G. Macready が生み出した組合せ最適化の領域の定理である。その定義は以下のようになる。 ……コスト関数の極値を探索するあらゆるアルゴリズムは、全ての可能なコスト関数に適用した結果を平均すると同じ性能となる — Wolpert and Macready、1995年 解説[編集] この定理の名称は、ハインラインのSF小説『月は無慈悲な夜の女王』(1966年)で有名になった格言の"There ain't no such thing as a free lunch."に由来する。かつて酒場で「飲みに来た客には昼を無料で振る舞う」という宣伝が行われたが、「無料の昼」の代金は酒代に含まれていて実際には「無料の昼」なんても

    ノーフリーランチ定理 - Wikipedia
  • ラッセルのパラドックス - Wikipedia

    ラッセルのパラドックス(英: Russell's paradox)とは、素朴集合論において、自身を要素として持たない集合全体からなる集合の存在を認めると矛盾が導かれるというパラドックス。バートランド・ラッセルからゴットロープ・フレーゲへの1902年6月16日付けの書簡においてフレーゲの『算術の基法則』における矛盾を指摘する記述に現れ[1]、1903年出版のフレーゲの『算術の基法則』第II巻(独: Grundgesetze der Arithmetik II)の後書きに収録された[2]。なお、ラッセルに先立ってツェルメロも同じパラドックスを発見しており、ヒルベルトやフッサールなどゲッティンゲン大学の同僚に伝えた記録が残っている[3][4]。 ラッセルの型理論(階型理論)の目的のひとつは、このパラドックスを解消することにあった[5]。 概要[編集] 「それ自身を要素として含まない集合」を「

  • 数学的帰納法 - Wikipedia

    数学的帰納法(すうがくてききのうほう、英: mathematical induction)は、数学における証明の手法の一つである。 例えば自然数に関する命題 P(n) が全ての自然数 n に対して成り立つことを証明するために、次のような手続きを行う[注 1]。 P(1) が成り立つことを示す。 任意の自然数 k に対して、「P(k) ⇒ P(k + 1)」が成り立つことを示す。 1と2の議論から任意の自然数 n について P(n) が成り立つことを結論づける。 概要[編集] 自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。 なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は帰納ではなく、純粋に自然数の構造に依存した演繹論理の一種である。2 により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見え

  • シンプソンのパラドックス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "シンプソンのパラドックス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2012年10月) 母集団全体では負の相関があるにもかかわらず、各層では正の相関があるといった逆転現象が起こり得る。 シンプソンのパラドックス(英: Simpson's paradox)もしくはユール=シンプソン効果(英: Yule–Simpson effect)は1951年にイギリスの統計学者エドワード・H・シンプソン(英語版)によって記述された統計学的なパラドックスである[1]。母集団での相関と、母集団を分割した集団での相関は、異なっている場合があるという逆説。

    シンプソンのパラドックス - Wikipedia
  • 主観確率 - Wikipedia

    主観確率(しゅかんかくりつ、英: subjective probability)は、客観確率に対比される概念。この両者は確率の哲学的解釈における二つの主要な選択肢である。主観的確率の考え方は1920年代から1930年代ごろにフランク・ラムゼイやブルーノ・デ・フィネッティらによって導入された。 主観確率と客観確率[編集] 客観確率とは、世界の中に存在する頻度や傾向性など、我々の主観によらず存在するものとしての確率を指す。客観確率は実験または理論的考察(思考実験)から求められ、客観的な観測結果と比較できるランダムな事象についての確率である。 主観確率とは、人間が考える主観的な信念あるいは信頼の度合(客観的には求められない)をいう。たとえば「かつて火星に生命が存在した確率」という言葉は、主観確率の考え方からは、「かつて火星に生命が存在したと信じる信念の度合い」と同値である。 数学における確率論は

  • ベイズの定理 - Wikipedia

    トーマス・ベイズ(c. 1701–1761) 確率論や統計学において、トーマス・ベイズ牧師にちなんで名付けられたベイズの定理(ベイズのていり、英: Bayes' theorem)、ベイズの法則、最近ではベイズ・プライスの定理[1]とは、ある事象に関連する可能性のある条件についての事前の知識に基づいて、その事象の確率を記述するものである[2]。例えば、健康問題の発生リスクが年齢とともに増加することが知られている場合、ベイズの定理により、ある年齢の個人のリスクを、単にその個人が集団全体の典型的な例であると仮定するよりも、(年齢を条件として)より正確に評価することができる。 ベイズの定理を応用したものに、推計統計学の手法の一つであるベイズ推定がある。その際、定理に関わる確率は、異なる確率解釈をすることができる。ベイズ確率の解釈では、定理は確率として表現された信念の度合いが、関連する証拠の入手可能

    ベイズの定理 - Wikipedia
  • 誕生日のパラドックス - Wikipedia

    誕生日のパラドックス(たんじょうびのパラドックス、英: birthday paradox)とは「何人集まれば、その中に誕生日が同一の2人(以上)がいる確率が、50%を超えるか?」という問題から生じるパラドックスである。鳩の巣原理より、366人(閏日も考えるなら367人)が集まれば確率は100%となるが、その5分の1に満たない70人でもこの確率は99.9%を超え、50%を超えるのに必要な人数はわずか23人である。 誕生日のパラドックスの「パラドックス」は、論理的矛盾という意味ではなく、結果が一般的な直感に反するという意味でのパラドックスである。 この理論の背景には Z.E. Schnabel によって記述された「湖にいる魚の総数の推定[1]」がある。これは、統計学では標的再捕獲法 (capture‐recapture法) として知られている。 誕生日問題[編集] ある集団に同じ誕生日のペアが

  • モンティ・ホール問題 - Wikipedia

    サヴァントの再再々解説でも大論争へと発展、「彼女こそ間違っている」という感情的なジェンダー問題にまで飛び火した。 プロ数学者ポール・エルデシュの弟子だったアンドリュー・ヴァージョニが問題を自前のパーソナルコンピュータでモンテカルロ法を用いて数百回のシミュレーションを行うと、結果はサヴァントの答えと一致。エルデシュは「あり得ない」と主張していたがヴァージョニがコンピュータで弾き出した答えを見せられサヴァントが正しかったと認める[1]。その後、カール・セーガンら著名人らがモンティーホール問題を解説、サヴァントの答えに反論を行なっていた人々は、誤りを認める。 サヴァントは、「最も高い知能指数を有する者が、子供でもわかる些細な間違いを新聞で晒した」等の数多くの非難に対して3回のコラムをこの問題にあて、激しい反論の攻撃に耐えて持論を擁護し通し、証明した[2]。それによると、ドアの数を100万に増や

    モンティ・ホール問題 - Wikipedia
  • 1