タグ

ブックマーク / www.riken.jp (38)

  • 理化学研究所が企画した「一家に1枚 世界とつながる“数理”」が公開

    文部科学省が毎年4月の科学技術週間にあわせて制作する学習資料「一家に1枚」について、令和6年度版のテーマとして理化学研究所が企画した「世界とつながる"数理"」が選ばれ、2024年3月25日にダウンロード用画像が文部科学省の科学技術週間のページに公開されました。 ポスターは全国の小学校・中学校・高等学校、大学等へ配布されている他、今後、科学館や博物館などでも配られる予定です。また、紙面の内容をより掘り下げた特設ウェブサイトも公開する予定です。 制作に当たっては、理研数理創造プログラム(iTHEMS)の永井 智哉 コーディネーターをはじめとした研究者や事務部門の職員を含めた理研所内外の制作チームにより制作監修をしました。 「数学を道具として使うこと」で世界のものごとを理解したり答えを出したりする「数理」をテーマに、数理が私たちの生活でどのような形で使われているのかを、さまざまな事例をもとに紹介

    理化学研究所が企画した「一家に1枚 世界とつながる“数理”」が公開
    kamei_rio
    kamei_rio 2024/04/05
    つながる数理
  • 国産量子コンピュータ初号機の愛称募集を開始しました

    理化学研究所 量子コンピュータ研究センター(RQC)では、2023年3月27日にクラウド利用を開始した国産超伝導量子コンピュータ初号機(64量子ビット)について、より多くの皆様に親しみを持っていただけるように、愛称をつけることと致しました。ついては、広く皆様から愛称を募集いたします。 その愛称については以下のようなことを期待しています。 国産として初めてクラウド公開した量子コンピュータであることを知っていただけること 日発の量子コンピュータ実機として、国際的な発信にふさわしい名前であること 日国内のみならず、世界中の方々にとっても親しみやすい名前であること どうぞ、奮ってご応募ください! 募集要項 応募資格 個人であればどなたでも応募可能。お一人で複数ご応募いただいても結構です。 応募期間 2023年4月7日(金)から5月31日(水)23時まで (結果は、2023年7月末ごろに公表予定

    国産量子コンピュータ初号機の愛称募集を開始しました
    kamei_rio
    kamei_rio 2023/04/10
    はじめてのお量子版、はダメだな…
  • 「量子もつれ」における重大な性質を新発見

    現在、世界各国で研究開発が進められている量子コンピュータ。量子計算をする上で不可欠なものに「量子もつれ」という物理現象があります。量子もつれには謎が多く、その解明は量子コンピュータの発展に大きく寄与します。このような中、量子もつれの重大な性質の一つを理論的に明らかにしたのが、桑原知剛理研白眉研究チームリーダー(白眉TL)です。 謎の多い「量子もつれ」という物理現象 量子とは粒子と波の性質を併せ持つ、極めて小さな物質やエネルギーの単位のことをいう。このようなミクロな世界での物理現象を記述するのが量子力学であり、その中の奇妙な現象の一つに「量子もつれ」がある。量子もつれとは、2個以上の量子が古典力学では説明できない不思議な相関を持つことをいう。 桑原白眉TLはこう話す。「例えば、量子にはスピンという自転のような性質があり、スピンは上向きと下向きの2通りしかないことが知られています。ここで、上向

    「量子もつれ」における重大な性質を新発見
    kamei_rio
    kamei_rio 2022/08/03
  • 4個の中性子だけでできた原子核を観測

    理化学研究所(理研)仁科加速器科学研究センター多種粒子測定装置開発チームの大津秀暁チームリーダー、スピン・アイソスピン研究室のバレリー・パニン特別研究員(研究当時、現客員研究員)、ダルムシュタット工科大学のメイテル・デュア研究員、ステファノス・パシャリス研究員(研究当時)、トーマス・オウマン教授、東京大学大学院理学系研究科附属原子核科学研究センターの下浦享教授(研究当時)、東京工業大学理学院物理学系の中村隆司教授、近藤洋介助教らの国際共同研究グループは、理研の重イオン[1]加速器施設「RIビームファクトリー(RIBF)[2]」の多種粒子測定装置「SAMURAIスペクトロメータ[3]」を用いて、4個の中性子だけでできた原子核「テトラ中性子核」の観測に成功し、陽子を含まない複数個の中性子が原子核を構成して存在できる新たな証拠を得ました。 研究成果は、陽子を1個も含まない、いわば「原子番号ゼロ

    4個の中性子だけでできた原子核を観測
    kamei_rio
    kamei_rio 2022/06/24
    "陽子と4He核を正面衝突させ、最大エネルギーに移行させることにより、8He核から突然4He核がなくなったという状況を作り出したわけです。" 必殺の欠損質量分光法!らしい
  • 蒸発するブラックホールの内部を理論的に記述

    理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

    蒸発するブラックホールの内部を理論的に記述
    kamei_rio
    kamei_rio 2020/07/09
    "落下と蒸発の効果が釣り合って、蒸発が先に生じている分だけ、粒子はシュワルツシルト半径に届きません" を物質の量子力学の効果を含むアインシュタイン方程式から導いたという話。事象の地平線よりこっちにいるとな
  • 新粒子「ダイオメガ」 | 理化学研究所

    理化学研究所(理研)仁科加速器科学研究センター量子ハドロン物理学研究室の権業慎也基礎科学特別研究員、土井琢身専任研究員、数理創造プログラムの初田哲男プログラムディレクター、京都大学基礎物理学研究所の佐々木健志特任助教、青木慎也教授、大阪大学核物理研究センターの石井理修准教授らの共同研究グループ※「HAL QCD Collaboration[1]」は、スーパーコンピュータ「京」[2]を用いることで、新粒子「ダイオメガ(ΩΩ)」の存在を理論的に予言しました。 研究成果は、素粒子のクォーク[3]がどのように組み合わさって物質ができているのかという、現代物理学の根源的問題の解明につながると期待できます。 クォークには、アップ、ダウン、ストレンジ、チャーム、ボトム、トップの6種類があることが、小林誠博士と益川敏英博士(2008年ノーベル物理学賞受賞)により明らかにされました。陽子や中性子はアップク

  • 水に特有の物理的特性の起源を解明 | 理化学研究所

    要旨 理化学研究所(理研)放射光科学総合研究センター ビームライン開発チームの片山哲夫客員研究員(高輝度光科学研究センターXFEL利用研究推進室研究員)、ストックホルム大学のキョンホァン・キム研究員、アンダース・ニルソン教授らの国際共同研究グループは、X線自由電子レーザー(XFEL)[1]施設SACLA[2]を利用し、過冷却状態[3]にある水(H2O)の構造を捉えることに成功しました。 水は生命に不可欠な液体ですが、その挙動に関する理解は不完全です。例えば、温度を下げていくときの密度、熱容量[4]、等温圧縮率[5]といった熱力学的な特性の変化は、水と他の液体とでは逆の挙動を示します。そのため、水の熱力学的な特性については長年議論されており、いくつかの仮説が提唱されています。そのうちの一つが、水には密度の異なる二つの相があり、その間を揺らいでいるという仮説です。しかし、温度を0℃未満に下げた

    kamei_rio
    kamei_rio 2018/01/11
    "X線自由電子レーザー(XFEL)施設SACLAを利用し、過冷却状態にある水(H2O)の構造を捉えることに成功" フェムト秒のパルス幅なので凍る前に計測できる→等温上昇率は-44℃で反転
  • 寄生植物は植物ホルモンを使い宿主を太らせる | 60秒でわかるプレスリリース | 理化学研究所

    植物は一般的に、太陽光を浴びて光合成をすることで成長に必要な栄養を作り出しますが、そうではない植物もいます。それは、ほかの植物に寄生し栄養を奪い取って生きる寄生植物です。なかでも、ハマウツボ科の根寄生植物は穀物となる植物に寄生するため、アフリカや地中海沿岸を中心に甚大な農業被害をもたらしています。そのため、寄生植物がどのように宿主植物の生理機能や成長を制御しているかを理解することが、被害対策を立てる上で重要な課題となります。 根寄生植物は根に「吸器」と呼ばれる侵入器官を形成し、宿主植物の根に侵入します。そして、栄養の通り道である「維管束」とつながることで宿主植物から栄養を奪い取ります。また、栄養が宿主植物から寄生植物へと移動すると同時に、タンパク質やRNAなどの物質が寄生植物から宿主植物へと移動することが知られていました。しかし、その仕組みや物質の役割はよく分かっていませんでした。 今回、

    寄生植物は植物ホルモンを使い宿主を太らせる | 60秒でわかるプレスリリース | 理化学研究所
    kamei_rio
    kamei_rio 2017/05/03
    "寄生植物にとって維管束組織を肥大させることが栄養を奪い取る効率を高めている" いい観測
  • 系外惑星の巨大リングの回転は公転と逆向き | 理化学研究所

    要旨 理化学研究所(理研)計算科学研究機構粒子系シミュレータ研究チームのステーヴン・リーデェル国際特別研究員とライデン天文台のマシュー・ケンワージー准教授の国際共同研究チームは、初めてリングを持つ系外惑星[1]として発見された「J1407b」のリングが、その巨大さにも関わらず主星[1]「J1407」の潮汐力[2]によって破壊されずに存在しているメカニズムをシミュレーションにより解明しました。 J1407は、地球から約420光年離れた位置にある恒星[1]です。J1407では“非常に複雑で長時間にわたる「」[3]”が2007年に起きています。これは2012年に分かりました注1)。2012年当初、このの正体は明らかではなく、①巨大惑星の周りのリングがJ1407の前を通った、②原始惑星系星雲[4]を持つ恒星がJ1407の前を通った、という二つの可能性が考えられました。そして、の原因となる天体

    kamei_rio
    kamei_rio 2016/11/03
    "回転が公転と逆向きだと、リングが10万年以上にわたって存在できる" つまり巨大なままでいられる。土星のように同じ向きだと小さくなると。
  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

    kamei_rio
    kamei_rio 2016/06/03
  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

    kamei_rio
    kamei_rio 2016/04/27
    "プランク定数を温度で割った分だけ時間をずらすように選んだときにのみ、そのような対称性が現れる" "ネーターの定理をその対称性に適用することで得られる保存量がエントロピーと一致"
  • 動物の争いでいつ降参するかを決める神経回路 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター発生遺伝子制御研究チームの岡仁チームリーダーらの研究チーム※は、動物が争う際にいつ降参するかを決めるのに重要な役割を果たす脳内の神経回路を発見しました。 動物の多くは、物や縄張り、より良い生殖パートナーなどを求めて、同種同士でも争います。通常このような争いは、相手が死ぬまで続けられるのではなく、2匹のうちのどちらかが降参すれば終わります。争いの勝ち負けによってそれぞれの優劣を決める仕組みは、グループ全体の存続を脅かすことなく、グループ内で資源を共有できる点で有効です。しかし、このような争いで優劣を決める際に働く脳内メカニズムは、ほとんど分かっていませんでした。 研究チームは、闘争や逃走、すくみ反応など、動物のさまざまな防御行動に関わるとされる中脳水道周囲灰白質(PAG)[1]に情報を伝える、「手綱核—脚間核神経回路[2]」に注目しました。

    kamei_rio
    kamei_rio 2016/04/02
    "いわゆる「逃走か、闘争か」という正反対の行動" を判断する神経をビビッとやる研究
  • 物質と反物質の違いの理論的解明に道筋 | 理化学研究所

    2015年11月20日 理化学研究所 ブルックヘブン国立研究所 コロンビア大学 コネチカット大学 エジンバラ大学 プリマス大学 サウサンプトン大学 要旨 理化学研究所(理研)仁科加速器研究センター 理研BNL研究センター計算物理研究グループの出渕卓グループリーダー、クリストファー・ケリー理研BNLセンター研究員らをはじめとする国際共同研究グループ※は、原子より小さい極微スケールで起こるK中間子[1]崩壊における「CP対称性の破れ[2]」のスーパーコンピュータを用いた計算に成功しました。今回の理論計算は、実験結果との比較をするにあたって最終的な結論を出すための精度がまだ不足していますが、長年の課題であったK中間子崩壊過程におけるCP対称性の破れの理論計算が可能であることを証明しました。 約138億年前、ビッグバンにおいて同数の粒子と反粒子が対生成されたと考えられています。しかし現在の宇宙には

    kamei_rio
    kamei_rio 2015/11/21
    "「IBM Blue Gene/Q」で大規模格子量子色力学計算を行い、小林・益川理論と素粒子の標準理論から導き出されるCP対称性の破れのサイズを初めて計算で示し、実験結果との比較を可能にしました"
  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

    kamei_rio
    kamei_rio 2015/09/26
  • 重力によって移動方向が変わらないオーキシンを発見 | 理化学研究所

    要旨 理化学研究所(理研)環境資源科学研究センター生産機能研究グループの笠原博幸上級研究員らの国際共同研究グループ※は、植物ホルモン[1]「オーキシン[2]」の一種であるフェニル酢酸(PAA)が、重力によって移動方向が変わらないユニークな特徴を持つことを発見しました。 オーキシンは植物の成長や形態形成で中心的な役割を果たす植物ホルモンであり、特に光や重力に対する植物の屈性に関与することで知られています。そのオーキシンの中で、最初に同定されたのがインドール-3-酢酸(IAA)です。植物は細胞膜上の輸送体を使ってIAAを決まった方向へ輸送(極性輸送[3])しています。植物の茎が重力を感じると、IAAは重力方向へと移動し、濃度の高くなった重力側の細胞伸長を促進することで屈性を引き起こします。一方、強力な除草剤として広く使われてきた合成オーキシンの2,4-ジクロロフェノキシ酢酸(2,4-D)などは

    kamei_rio
    kamei_rio 2015/06/27
    "様々な植物がIAAとPAAという移動性の異なる2つのオーキシンを使って成長や環境適応を協調的に調節している可能性を示しました"
  • 非対称な光学迷彩装置を理論的に実証 | 理化学研究所

    要旨 理化学研究所(理研)理論科学研究推進グループ階層縦断型基礎物理学研究チームの瀧雅人研究員と東京工業大学量子ナノエレクトロニクス研究センターの雨宮智宏助教と荒井滋久教授らとの共同研究チームは、非対称な光学迷彩を設計する理論を構築しました。 光学迷彩は、光を自在に曲げる装置を設計、開発することで、物体や人を光学的に見えなくする技術です。これまで様々な理論的提唱や実験的な確認がなされてきました。しかし、光学迷彩装置は向かってくる光を迂回させることで、装置自体を見えなくしています。したがって、装置内に入射する光がなく、装置内からは外部を見ることができませんでした。このように、これまでの原理では外部からも内部からも見えないという“対称的”な振る舞いを示す光学迷彩装置しか作ることができませんでした。そこで共同研究チームは、光に仮想的にクーロン力[1]とローレンツ力[2]を働かせる光学迷彩装置を提

    kamei_rio
    kamei_rio 2015/06/09
  • 超並列分子動力学計算ソフトウェア「GENESIS」を開発 | 理化学研究所

    要旨 理化学研究所(理研)計算科学研究機構粒子系生物物理研究チームの杉田有治チームリーダー、ジェウン・ジョン研究員、杉田理論分子科学研究室の森貴治研究員らの共同研究チーム※は、生体分子の運動を1分子レベルから細胞レベルまでの幅広い空間スケールで解析可能なシミュレーションソフトウェア「GENESIS」を開発し、5月8日からオープンソースソフトウェアとして無償で公開します。 近年、計算機によるシミュレーションは、実験、理論に次ぐ第3の解析手法として、さまざまな分野で活用されています。生命科学では分子動力学法[1]と呼ばれるシミュレーション技法が、タンパク質の立体構造予測や、酵素反応のメカニズムの解明、薬の理論設計などに広く応用されています。分子動力学法は粒子間相互作用[2]をクーロンの法則などの物理法則に基づいて計算し、ニュートンの運動方程式F = maを解くことで分子の動きをコンピュータ内で

    kamei_rio
    kamei_rio 2015/05/09
    強そうな名前だ!
  • 哺乳類と爬虫類-鳥類は、独自に鼓膜を獲得 | 理化学研究所

    要旨 理化学研究所(理研)倉谷形態進化研究室の倉谷滋主任研究員、武智正樹元研究員、東京大学大学院医学系研究科の栗原裕基教授、北沢太郎元大学院生らの共同研究グループ※は、マウスとニワトリの胚発生において同じ遺伝子の働きを抑える実験を行い、進化の中で哺乳類系統[1]と爬虫(はちゅう)類-鳥類系統[2]がそれぞれ独自の発生メカニズムにより鼓膜を獲得したことの発生学的証拠を発見しました。 陸上脊椎動物は、空気中の音を聴くために、鼓膜[3]と中耳骨[4]を顎(がく)関節の近くに進化させてきました。中耳骨は、哺乳類では3個、爬虫類と鳥類では1個あります。これらの骨は化石にも残ることから、その進化の歴史をたどることができ、哺乳類の祖先で顎とその支持装置を構成していた骨が次第に中耳の骨へと変化していった様子が明らかになっています。しかし、どのようなきっかけで、哺乳類系統が爬虫類-鳥類系統よりも多くの中耳骨

    kamei_rio
    kamei_rio 2015/04/23
    リア獣どもが耳をすませば
  • 高強度レーザーによるスペースデブリ除去技術 | 理化学研究所

    2015年4月21日 理化学研究所 エコール・ポリテクニーク 原子核研究所宇宙物理センター/パリ第7大学 トリノ大学 カリフォルニア大学 アーバイン校 要旨 理化学研究所(理研)戎崎計算宇宙物理研究室の戎崎俊一主任研究員、光量子工学研究領域光量子技術基盤開発グループの和田智之グループディレクターらの共同研究グル―プ※は、スペースデブリ(宇宙ゴミ)の除去技術を考案しました。数センチメートル(cm)サイズの小さなスペースデブリを除去する方法の提案は、初めてです。これはエコール・ポリテクニークと原子核研究所宇宙物理センター/パリ第7大学(フランス)、トリノ大学(イタリア)、カリフォルニア大学アーバイン校(米国)との共同研究による成果です。 スペースデブリは、地球衛星軌道を周回する不要な人工物体です。近年宇宙開発の活発化に伴い増え続けています。2000年から2014年の間にスペースデブリの量は約2

    kamei_rio
    kamei_rio 2015/04/22
  • 理研ブランドの清酒「仁科誉」 | 理化学研究所

    理研仁科加速器研究センター 生物照射チーム(阿部知子チームリーダー)は、加速器「リングサイクロトロン」で加速した重イオンビームによる変異誘発技術を用いて、これまでに連続開花性に富む花持ちの良い「バーベナ」、優雅な濃いピンク色の新色「ペチュニア」、白と紫がかったピンク色の新色「トレニア」、さらには淡い黄色のサクラ「仁科蔵王」、四季咲きのサクラ「仁科乙女」など、次々と品種改良、新品種を開発してきました。 そして2010年、阿部チームリーダーらは埼玉県産業技術総合センターと共同で、重イオンビームによる変異誘発技術を用いて吟醸酒用の新しい酵母の開発に成功しました。2011年には、この酵母を使ってつくられた日酒が、埼玉県内3カ所の酒蔵からそれぞれ、「純米大吟醸」「純米吟醸」「吟醸生」として販売が開始されました。 これらのお酒は、各酒蔵の協力により理研のプライベートブランド「仁科誉(にしなほまれ)